img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 37
всего попыток: 60
Задача опубликована: 01.03.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В стандартном комплекте домино 28 костяшек с числами от 0 до 6. Прикладывая костяшки этого комплекта друг к другу по правилам домино, можно сложить фигуру, изображенную на рисунке.

Домино

При этом можно добиться того, чтобы сумма всех чисел в каждой из пяти рамок была одной и той же. Чему равна эта сумма?

Задачу решили: 25
всего попыток: 138
Задача опубликована: 08.04.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

На шахматном поле существует всего три замкнутых маршрута коня длиной 4 хода, изображенных на рисунке.

Квадраты и парабола

Сколько существует различных замкнутых маршрутов коня длиной 6 ходов?

Задачу решили: 26
всего попыток: 96
Задача опубликована: 29.07.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Десять пронумерованных фишек расположены в форме треугольника.

Треугольная карусель

За один ход любые три соседние фишки можно повернуть вокруг их общего центра на угол 120° так, чтобы они циклически переместились, причем, как по часовой стрелке, так и против неё. Здесь всего девять троек  фишек, которые можно поворачивать. За какое, наименьшее число ходов можно из данного слева расположения фишек получить расположение, изображенное справа?

Задачу решили: 27
всего попыток: 30
Задача опубликована: 02.05.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению.

14 кубиков - 23421314

Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.

Задачу решили: 25
всего попыток: 82
Задача опубликована: 13.09.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: makar243 (Сулейман Макаренко)

На ступенчатом квадрате построен замкнутый маршрут шахматного коня, состоящий из 14 прыжков.

Самый длинный маршрут

Постройте здесь замкнутый маршрут, содержащий максимально возможное число прыжков коня. Дважды прыгать в одну клетку нельзя. Начинать можно с любой клетки. В ответе укажите число прыжков шахматного коня в этом маршруте.

Задачу решили: 20
всего попыток: 89
Задача опубликована: 11.10.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: шахматыimg
Лучшее решение: Vkorsukov

На ступенчатом квадрате построен замкнутый маршрут шахматного коня, состоящий из 14 прыжков.

Самый длинный маршрут - 2

Постройте здесь замкнутый маршрут, содержащий максимально возможное число прыжков коня. Дважды прыгать в одну клетку нельзя. Начинать можно с любой клетки. В ответе укажите число прыжков шахматного коня в этом маршруте.

Задачу решили: 19
всего попыток: 100
Задача опубликована: 07.03.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В кружки фигуры, изображенной на рисунке, расставлены натуральные числа от 1 до 49, и в каждом квадрате найдена сумма четырех чисел, расположенных в его вершинах, после чего квадраты с одинаковыми суммами закрашены одним цветом. 

Максимум одинаковых сумм

В этой расстановке максимум одинаковых сумм равен числу зеленых клеток, то есть 7. Расставьте эти числа в другом порядке, просуммируйте четверки чисел и раскрасьте квадраты указанным образом. В ответе укажите наибольшее возможное число одноцветных квадратов.

Уточним, рассматриваются только квадраты равные закрашенным.

Задачу решили: 20
всего попыток: 28
Задача опубликована: 06.09.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Девочка пронумеровала черные клетки шахматной доски 8х8 числами от 1 до 32 в натуральном порядке так, как показано на рисунке.

Шахматная доска и квадраты 2х2

Мальчик собирается пронумеровать числами от 1 до 32 белые клетки этой доски так, чтобы суммы четырех чисел в любом квадрате 2х2 оказались равными. Сколькими различными способами мальчик сможет это сделать? В ответе укажите сумму всех чисел, расположенных на «белой» диагонали всех возможных решений (эти клетки отмечены звездочками).

Задачу решили: 12
всего попыток: 26
Задача опубликована: 14.10.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: makar243 (Сулейман Макаренко)

25 точек расположены в узлах решетки в форме квадрата (рис. слева).

Ломаные маршруты

Сколько симметричных маршрутов можно проложить из точки A в точку B по линиям решетки так, чтобы каждый маршрут проходил через все точки и не пересекал себя? На рисунке справа показаны два различных симметричных маршрута.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.