Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
205
всего попыток:
487
Какое минимальное число выстрелов нужно сделать в игре "морской бой", чтобы наверняка попасть в "крейсер"? (В "морской бой" играют в квадрате 10×10 клеток, "крейсер" — это прямоугольник 1×4 клетки, а одним выстрелом поражается одна клетка.)
Задачу решили:
83
всего попыток:
465
Перед Вами 25 окопов в ряд. В каком-то из них сидит снайпер. У Вас в руках гранатомёт, позволяющий вдребезги разнести всё содержимое любого из окопов (сам окоп при этом остаётся цел). Сразу после того, как Вы делаете выстрел, снайпер по не известной Вам логике перебегает в соседний окоп (если Вы промазали). Остаться в том же окопе, равно как и перебежать дальше, чем в соседний окоп, он не может. Следующий выстрел. Перебежка. Выстрел. Перебежка. И так далее. Проблема в том, что ни снайпера, ни его перебежек Вы не видите. Какое минимальное число выстрелов Вам понадобится, чтобы гарантированно ликвидировать снайпера?
(Задача носит исследовательский характер, поскольку доказательства минимальности ответа, заложенного в систему, нам не известно. Надеемся, что участники предложат такое доказательство!)
Задачу решили:
82
всего попыток:
99
Два равных прямоугольника (один с синими сторонами, а другой — с красными) ограничивают на плоскости некоторый восьмиугольник. Найти максимум разности между суммой длин его красных сторон и суммой длин его синих сторон при условии, что диагонали прямоугольников равны 60.
Задачу решили:
82
всего попыток:
234
Квадрат на плоскости разбит на 25 маленьких одинаковых квадратов, через все вершины которых проходит некоторая ломаная (возможно самопересекающаяся). Каково минимальное число её звеньев?
Задачу решили:
105
всего попыток:
513
Грибник заблудился в лесу. Однако он уверен, что не дальше, чем в 3 км от него, находится прямое шоссе. Какое минимальное число км придётся преодолеть грибнику, чтобы наверняка (т.е. при полном отсутствии везения) выбраться на шоссе? Ответ округлите до ближайшего целого числа.
Задачу решили:
99
всего попыток:
202
На какое минимальное число частей нужно разрезать два неравных квадрата, чтобы из полученных частей можно было сложить квадрат (а лишних частей при этом не осталось)?
Задачу решили:
88
всего попыток:
441
На шахматной доске стоят 64 ладьи (на каждой клетке по ладье). Саша снимает их с доски по очереди, следуя правилу: можно снять любую ладью, которая бьёт нечётное число других оставшихся на доске ладей. Какое максимальное количество ладей удастся снять Саше? (Как обычно, ладьи бьют друг друга и по вертикали, и по горизонтали, но только если между ними нет других ладей.)
Задачу решили:
161
всего попыток:
191
Длины сторон остроугольного треугольника — последовательные целые числа. На среднюю по длине сторону опущена высота, которая делит её на некоторые отрезки. Найти разность их длин. (Точнее, её абсолютную величину.)
Задачу решили:
363
всего попыток:
707
В ящике лежат 3 пары чёрных носков, 2 пары коричневых и 1 пара синих. Вы вынимаете носки в темноте, не видя их цвета. Какое минимальное число носков Вам придётся достать, чтобы среди них обязательно нашлись две пары, каждая из которых состоит из двух носков одного цвета? (Все носки одного размера, правые и левые не отличаются, вытащенные пары носков могут быть разных цветов.)
Задачу решили:
24
всего попыток:
35
Большой прямоугольник разрезан на конечное число маленьких. (Стороны всех прямоугольников вертикальны или горизонтальны.) Известно, что у каждого маленького прямоугольника длина хотя бы одной стороны — целое число. Верно ли, что тогда и у большого прямоугольника хотя бы одна сторона имеет целую длину? (Если верно — доказать, если нет — привести пример.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|