img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 108
всего попыток: 166
Задача опубликована: 28.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Angelina

Число 2003/(2^2003) записано в виде конечной десятичной дроби. Какая цифра у него стоит на четвертом месте с конца?

Задачу решили: 130
всего попыток: 156
Задача опубликована: 17.12.12 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков 2012
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: leonid (Леонид Шляпочник)

В мешке 100 котов — черных, белых и серых. Количество чёрных котов больше, чем удвоенное количество белых; утроенное количество белых котов больше, чем учетверённое количество серых; утроенное количество серых котов больше количества чёрных. Сколько котов черного цвета в мешке?

Задачу решили: 97
всего попыток: 201
Задача опубликована: 31.12.12 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков 2012
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: TALMON (Тальмон Сильвер)

Каждый житель острова людоедов принадлежит к одному из двух племён: рыцарей, которые всегда говорят правду, или лжецов, которые всегда лгут. Однажды 1000 островитян встали в круг, и каждый заявил: «Оба моих соседа не из моего племени». Какое наибольшее количество рыцарей могло стоять в кругу?

Задачу решили: 85
всего попыток: 155
Задача опубликована: 14.01.13 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Число назовем хорошим, если оно 20-значное и любое другое 20-значное число с такой же суммой цифр больше него. Сколько существует хороших чисел?

Задачу решили: 110
всего попыток: 133
Задача опубликована: 13.03.13 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков 2012
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: azat

Дан треугольник ABC, где ?BAC = 60?. Точка S — середина биссектрисы AD. Известно, что ?SBA = 30?. Найдите DC/BS.

Задачу решили: 115
всего попыток: 138
Задача опубликована: 23.09.13 08:00
Прислал: nauru img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: kot_vi

В роще растет 18 дубов. На них поровну желудей. Подул ветер и с некоторых дубов осыпались желуди: с каких-то ровно половина, с каких то ровно треть, с остальных же ничего не упало. При этом со всех дубов вместе упала ровно одна девятая  часть всех желудей. Со скольких дубов желуди не упали?

Задачу решили: 62
всего попыток: 69
Задача опубликована: 28.03.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg

Функция f определена на множестве всех натуральных чисел, принимает значения в множестве натуральных чисел, и одно из её значений равно 1. Кроме того известно, что для любого натурального n выполнено равенство f(n+f(n)) = f(n). Найдите f(2014).

Задачу решили: 92
всего попыток: 160
Задача опубликована: 14.04.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

У торговцев Пети и Васи было по 30 пирожков. Они начали продавать их по 30 рублей. Если у одного из них покупают пирожок, другой немедленно снижает цену на свои пирожки на один рубль (пирожки продаются только по одному, и такого, чтобы они продавали по пирожку одновременно, не бывает). Сколько денег выручат в сумме Петя и Вася, когда продадут все свои пирожки?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.