Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
31
всего попыток:
34
Классный руководитель отправил своих учеников Антона, Бориса, Вадима, Григория и Дмитрия на олимпиаду по математике и предположил, что Антон займет первое место, Борис - второе, Вадим - третье, Григорий - четвертое и Дмитрий - пятое. Оказалось, что он не угадал ни одного правильного места, и ни одной пары следующей непосредственно друг за другом учеников. Учитель математики предположил, что последовательность будет такой: Григорий, Антон, Дмитрий, Вадим, Борис и угадал места двоих учеников и две пары непосредственно следующих друг за другом учеников. Установите верный порядок. В ответе укажите последовательность цифр 1 (соответствует Антону), 2 (соответствует Борису) и т.д. в порядке от первого места до последнего. Например, если бы учитель математики был прав, то ответом было бы число - 41532.
Задачу решили:
39
всего попыток:
54
Есть мешок сахара, чашечные весы и гирька в 1 г. За какое минимальное число взвешений можно взвесить 1 кг сахара?
Задачу решили:
29
всего попыток:
70
Однажды на DIOFANT.RU было опубликовано 5 задач. Среди пользователей сайта не оказалось двух, кто решил одни и те же задачи. Если исключить любую задачу, то выбрав любого пользователя, можно найти и другого, решившего из оставшихся четырёх задач те же, что и он. Сколько пользователей решало задачи?
Задачу решили:
23
всего попыток:
67
На доске 5x5 расставлены 25 шашек реверси. За один ход разрешено перевернуть любую шашку и все соседние с ней (по стороне). Перевернутая шашка имеет другой цвет. Вначале все шашки белые. За какое наименьшее число ходов удастся получить позицию с одной чёрной шашкой?
Задачу решили:
30
всего попыток:
36
Прямоугольный параллелепипед 3x4x5 составлен из белых и черных единичных кубиков. Оказалось, что пар соседних кубиков (т. е. имеющих общую грань) разного цвета всего 48, пар соседних кубиков белого цвета всего 51. Сколько пар соседних кубиков черного цвета?
Задачу решили:
19
всего попыток:
37
У Кости есть игрушечная железная дорога в виде кольца, состоящая из n=13 равных дуг. Костя решил докупить ещё несколько таких же дуг, чтобы удлинить путь (при этом он уже не будет круговым, но должен остаться замкнутым и без самопересечений). Какое минимальное количество дуг ему хватит, чтобы осуществить задуманное?
Задачу решили:
34
всего попыток:
106
Как много равносторонних треугольников можно составить из 6 спичек?
Задачу решили:
21
всего попыток:
79
Имеется двое песочных часов: одни отмеряют 9 минут, вторые - 22 минуты. Какое миинимальное количество раз их нужно перевернуть, чтобы отмерить 33 минуты?
Задачу решили:
28
всего попыток:
31
Из всех 10 цифр (0, 1, 2, ..., 9) составили два пятизначных числа, при этом использовали все цифры и одно число оказалось меньше второго ровно в два раза. Найдите наименьшее число.
Задачу решили:
22
всего попыток:
23
20 студентов сдавали экзамен по очереди. Сначала они написали на бумажках номера от 1 до 20 и случайным образом вытаскивали по одной бумажке, тот кто вытащил бумажку с номером 1, пошел сдавать первым. Затем бумажка с номером 20 была уничтожена и оставшиеся студенты снова вытаскивали бумажки и снова, вытащивший номер 1 шел следующим. Процедура повторялась каждый раз, пока все студенты не сдали экзамен. Как оказалось, у каждого студента все вытянутые им номера были различными. Староста группы в первый раз вытащил число 14. Каким по счету он пошел отвечать?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|