Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
79
Из спичек сложили правильный шестиугольник, изображенный на рисунке. В нем спрятаны контуры нескольких правильных шестиугольников. Какое наименьшее количество спичек нужно убрать, чтобы контуры всех правильных шестиугольников оказались разрушенными?
Задачу решили:
45
всего попыток:
95
Разрежьте фигуру "Елочка", изображенную на рисунке на наименьшее число частей и сложите из них квадрат. В ответе укажите число этих частей.
Задачу решили:
39
всего попыток:
86
Имеется 1000 неокрашенных кубиков одного размера. Каждую грань этих кубиков можно покрасить одним цветом по своему усмотрению. Играя с этими кубиками можно сложить куб 10х10х10, поверхность которого полностью красная. Переложив кубики, можно сложить куб 10х10х10, поверхность которого полностью синяя, и т.д. Какое наибольшее число одноцветных кубов 10х10х10 различных по цвету можно сложить из этого набора.
Задачу решили:
37
всего попыток:
72
Прямая пересекает треугольник со сторонами 5, 7 и 9 так, что она делит пополам и его периметр, и площадь. В каком отношении она делит большую сторону треугольника? В ответе укажите отношение меньшей части к большей.
Задачу решили:
43
всего попыток:
67
Натуральное n-значное число равно n-ой степени суммы его цифр. Найтите все такие числа, в ответе укажите их сумму.
Задачу решили:
37
всего попыток:
60
В стандартном комплекте домино 28 костяшек с числами от 0 до 6. Прикладывая костяшки этого комплекта друг к другу по правилам домино, можно сложить фигуру, изображенную на рисунке. При этом можно добиться того, чтобы сумма всех чисел в каждой из пяти рамок была одной и той же. Чему равна эта сумма?
Задачу решили:
51
всего попыток:
68
Книга сшита из 12 одинаковых тетрадей, каждая тетрадь - из нескольких двойных листов, вложенных друг в друга. Все страницы книги пронумерованы, начиная с 1. Сумма номеров четырех страниц одного из двойных листов четвертой тетради равна 338. Сколько страниц в этой книге?
Задачу решили:
25
всего попыток:
138
На шахматном поле существует всего три замкнутых маршрута коня длиной 4 хода, изображенных на рисунке. Сколько существует различных замкнутых маршрутов коня длиной 6 ходов?
Задачу решили:
66
всего попыток:
106
Гимнасты одного веса построили пирамиду, изображенную на рисунке. Найдите вес одного гимнаста, если известно, что центральный гимнаст нижнего ряда давит на пол весом 264 кг.
Задачу решили:
67
всего попыток:
77
Решите уравнение 1+2+3+...+n=1*2*3*...*m, где n и m неравные натуральные числа. В ответе укажите произведение nm.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|