img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 163
всего попыток: 423
Задача опубликована: 21.12.09 14:00
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Какое наименьшее число точек нужно стереть с рисунка так, чтобы нельзя было нарисовать ни одного квадрата с вершинами в оставшихся точках?

 

Задачу решили: 86
всего попыток: 220
Задача опубликована: 22.12.09 22:46
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

На плоскости лежат круг радиуса 1 см и точка, удалённая от его центра на 60 см. Точку разрешается симметрично отразить относительно любой прямой, пересекающей круг. За какое минимальное число таких последовательных отражений Вам удастся переместить точку внутрь круга?

Задачу решили: 47
всего попыток: 90
Задача опубликована: 10.01.10 15:43
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В выпуклом 2010-угольнике отметили некоторые точки (не являющиеся его вершинами) так, что в произвольном треугольнике, образованном любыми тремя вершинами 2010-угольника, нашлась отмеченная точка. Найдите наименьшее число отмеченных точек.

Задачу решили: 35
всего попыток: 47
Задача опубликована: 15.01.10 16:29
Прислал: min img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: pete

Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых — целые числа. Может ли площадь четырёхугольника быть простым числом?

+ 26
  
Задачу решили: 46
всего попыток: 136
Задача опубликована: 16.01.10 15:52
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На квадратном торте лежат n не соприкасающихся друг с другом треугольных шоколадок. Для каких n торт всегда (т.е. при любых размерах и расположении шоколадок) можно разрезать на куски в форме выпуклых многоугольников так, чтобы каждый кусок содержал ровно одну шоколадку? (Шоколадки резать нельзя!) Если Ваш ответ "для всех" — введите 0, в противном случае — наибольшее возможное значение n.

+ 55
  
Задачу решили: 122
всего попыток: 177
Задача опубликована: 19.01.10 10:19
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите сумму тангенсов всех углов треугольника при условии, что все три тангенса — целые числа.

Задачу решили: 36
всего попыток: 118
Задача опубликована: 22.01.10 00:15
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Треугольник, лежащий на координатной плоскости, обладает следующим свойством: при его параллельном переносе на любой ненулевой вектор, обе координаты которого кратны 30, сдвинутый треугольник не перекрывает исходный (т.е. их внутренности не пересекаются). Найти наибольшую площадь исходного треугольника.

Задачу решили: 172
всего попыток: 402
Задача опубликована: 26.01.10 23:24
Прислал: Father img
Источник: С-ПбГУ информационных технологий, механики и ...
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Медиана, проведённая к одной из боковых сторон равнобедренного треугольника, делит его периметр на две части, длины которых равны 12 и 21. Найдите длину основания. (Если ответов несколько, введите их произведение.)

Задачу решили: 49
всего попыток: 69
Задача опубликована: 31.01.10 23:26
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Можно ли квадрат разрезать на 20 одинаковых прямоугольных треугольников, один катет каждого из которых в два раза длиннее другого?

Задачу решили: 72
всего попыток: 332
Задача опубликована: 15.02.10 10:59
Прислал: demiurgos img
Источник: Московская олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Mnohogrannik

Деревянный куб с ребром 10 см требуется оклеить в один слой цветной бумагой, вырезав при этом только одну заготовку из бумажного квадрата со стороной n см. Найти наименьшее n, при котором это возможно.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.