img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: StarpoM решил задачу "Все квадраты" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 183
всего попыток: 241
Задача опубликована: 14.12.11 08:00
Прислала: Margosha img
Источник: Московская математическая регата
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Сумма двух вещественных чисел a и b равна 5, при этом значение выражения a+b+a2b+b2a равно 24.

Найти сумму кубов чисел a и b. 

Задачу решили: 183
всего попыток: 205
Задача опубликована: 19.12.11 08:00
Прислал: Yhlas img
Источник: Зарубежные математические олимпиады
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Решите уравнение

8x(3x+1)=4

Задачу решили: 143
всего попыток: 172
Задача опубликована: 23.12.11 08:00
Прислала: Margosha img
Источник: Математическая олимпиада Швеции
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: azat

Найти наибольшее число R, при котором система уравнений: 

x-4y=1
Rx+3y=1

имеет решение в целых числах x, y. 

Задачу решили: 73
всего попыток: 136
Задача опубликована: 01.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Из точки P внутри треугольника ABC на его стороны опущены перпендикуляры PD, PE, PF. Известно, что величина угла A равна 60°, угла B - 30°, длина стороны AB равна 8 см. Найти наибольшее значение, которое может принимать выражение PD2 + PE2 + PF2.

Задачу решили: 48
всего попыток: 67
Задача опубликована: 11.01.12 08:00
Прислал: leonid img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите количество действительных решений уравнения f(f(x))=x, где функция f(x)=x3 - 2x2 + 6x - 18.

Задачу решили: 74
всего попыток: 155
Задача опубликована: 20.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: vitmark (Vitaly Markasyan)

В четырехугольнике ABCD BC является диаметром описанной окружности. Известно, что |AB|2 = 450, |CD|2 = 25 и сумма углов B и C равна 135°. Найдите значение |AD|2.

Задачу решили: 105
всего попыток: 149
Задача опубликована: 25.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: putout (Дмитрий Лебедев)

Положительные числа a, b удовлетворяют равенству ab(a + b + 1) = 25. Найдите наименьшее значение, которое может принимать выражение (a + b)(b + 1).

Задачу решили: 107
всего попыток: 147
Задача опубликована: 08.02.12 08:00
Прислал: Yhlas img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: VFChistov (Виктор Чистяков)

Решите уравнение в натуральных числах: x!+y!+z!=u!. В ответе укажите сумму всех возможных вариантов x+y+z+u.

Задачу решили: 45
всего попыток: 113
Задача опубликована: 10.02.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Дана окружность, радиус которой равен 36, и центр которой - точка O, и две точки на этой окружности: A и B. 

Дана точка P. Длины отрезков:

|PO| = 54

|PA| = 25

|PB| = 29

Прямая PA пересекает окружность в ещё одной точке A’. Прямая PB пересекает окружность в ещё одной точке B’.

Обозначим: C – точка пересечения прямых AB и A’B’, D – точка пересечения прямых AB’ и A’B, M – точка пересечения прямых CD и PO.

Чему равна длина отрезка OM?

Задачу решили: 62
всего попыток: 117
Задача опубликована: 27.02.12 08:00
Прислал: Dremov_Victor img
Источник: Японская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Пусть n > 2 целое число. Найдите наибольшее K и наименьшее G, при которых для любых положительных чисел a1, a2, ..., an справедливо следующее неравенство:

K <
\frac{a_1}{a_1 + a_2} + 
\frac{a_2}{a_2 + a_3} + \cdots
\frac{a_n}{a_n + a_1} <
G

Чему равно K+G для n = 100.

 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.