img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: StarpoM решил задачу "Все квадраты" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 236
всего попыток: 350
Задача опубликована: 09.03.11 08:00
Прислала: glorius_May img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: azat

— Вот это мороз!

— Да уж, страшно холодно.

— А ты заметила, что оба термометра, один из которых показывает температуру по Цельсию, а другой — по Фаренгейту, стоят на одинаковой отметке?

Сколько градусов на улице? (0 по Цельсию = 32 по Фаренгейту, а 100 по Цельсию = 212 по Фаренгейту.)

Задачу решили: 78
всего попыток: 283
Задача опубликована: 18.05.11 00:00
Прислала: Hasmik33 img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

У остроугольного треугольника радиус описанной окружности равен 100. Найдите минимальное целое значение его периметра.

Задачу решили: 131
всего попыток: 153
Задача опубликована: 17.06.11 08:00
Прислал: demiurgos img
Источник: problems.ru
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: gpariska (Галина Парижская)

Известно, что p, 4p2+1 и 6p2+1 — простые числа. Найдите наибольшее значение p.

Задачу решили: 129
всего попыток: 263
Задача опубликована: 22.06.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: casper

Перед Вами в ряд лежат 9 арбузов общим весом 70 кг. Для каждого арбуза (кроме первого и последнего) известен общий вес двух его соседей. У какого наибольшего числа арбузов можно однозначно определить вес?

Задачу решили: 132
всего попыток: 180
Задача опубликована: 11.07.11 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Mnohogrannik

Два друга гуляли по парку. Все дорожки в парке —  концентрические окружности и "радиусы" — отрезки, соединяющие некоторые точки самой внешней окружности с центром. Находясь как раз у одной из точек пересечения окружности с "радиусом", они вдруг подумали:

 — А интересно, какой путь короче: если идти сейчас по "радиусу" до более маленькой окружности, по ней идти до следующего "радиуса" и вернутся по нему к нашей окружности (этот путь изображён на рисунке зелённым цветом), или просто продолжить путь по нашей окружности до той же точки (на рисунке: красный цвет)?

Решили попробовать, разделились, пошли с одинаковой скоростью этими двумя разными путями и... пришли к точке встречи одновременно! Чему равен угол между этими двумя "радиусами"?

Задачу решили: 82
всего попыток: 97
Задача опубликована: 18.07.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Внутри треугольника ABC нашлись две точки, одна из которых удалена от прямых AB, BC и AC на расстояния 20, 24 и 30 соответственно, а другая — на расстояния 29, 27 и 24. Найдите радиус окружности, вписанной в треугольник ABC.

Задачу решили: 40
всего попыток: 149
Задача опубликована: 28.07.11 11:32
Прислал: leonid img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Существует ли вписанный в окружность n-угольник с попарно различными сторонами, каждая из которых является стороной некоторого, вписанного в ту же окружность, правильного многоугольника? (Если не существует, введите 0; если существует, укажите минимальное значение n.)

Задачу решили: 104
всего попыток: 146
Задача опубликована: 19.08.11 08:00
Прислал: PashaAC img
Источник: СПБЛМШ
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Какова максимальная разность арифметической прогрессии, среди членов которой есть числа 1/11, 1/13, 1/17?

Задачу решили: 34
всего попыток: 55
Задача опубликована: 14.09.11 08:00
Прислал: demiurgos img
Источник: Кружки МЦНМО
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

На листе клетчатой бумаги отмечено несколько узлов сетки (т.е. точек, в которых пересекаются вертикальные и горизонтальные линии) так, что внутри интервала, соединяющего любые две отмеченные точки вообще нет узлов сетки. Найдите наибольшее число отмеченных узлов.

Задачу решили: 110
всего попыток: 168
Задача опубликована: 19.09.11 08:00
Прислал: demiurgos img
Источник: Кружки МЦНМО
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

На доске написаны 13 чисел: 0, 1, 2, ..., 12. Среди них выбирают два каких-то числа a и b, стирают их, а вместо них пишут одно число ab+a+b. Описанную процедуру повторяют 12 раз. Найдите наибольшее число, которое может остаться на доске.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.