Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
29
всего попыток:
32
Найти площадь трапеции с основаниями 9 и 4, боковыми сторонами 3 и 4.
Задачу решили:
11
всего попыток:
18
В мешке есть шары 3 различных цветов. Поочередно берут один шар, смотрят на его цвет и кладут обратно в мешок. Оказалось, для того чтобы вынуть хотя-бы раз шар каждого цвета, требуется в среднем 937/105 попыток. Какое минимальное количество шаров может быть в мешке?
Задачу решили:
25
всего попыток:
26
Отрезок биссектрисы из вершины острого угла прямоугольного треугольника до точки пересечения биссектрис равен 5. Прилежащий к этой биссектрисе катет равен 7. Найти площадь треугольника.
Задачу решили:
26
всего попыток:
29
Найти отношение площади описанной окружности к сумме площадей вписанной и вневписанных окружностей прямоугольного треугольника.
Задачу решили:
16
всего попыток:
20
Рассматривается геометрическое место точек (ГМТ) М внутри треугольника АВС, что каждый из треугольников МАВ, МВС и МСА имеет площадь не меньше 1/2. Найдите площадь этого ГМТ, если стороны АВ, ВС и СА равны 5, 4 и 3 соответственно.
Задачу решили:
13
всего попыток:
15
На какое наименьшее число остроугольных треугольников можно разрезать прямоугольник?
Задачу решили:
12
всего попыток:
13
Найти пифагоров треугольник с наименьшим периметром, в который можно вписать две одинаковые окружности с радиусами больше 10, при этом одна окружность касается гипотенузы, катета и чевианы из прямого угла, а другая - гипотенузы, второго катета и той же чевианы. В ответе укажите периметр найденного треугольника.
Задачу решили:
10
всего попыток:
22
Имеются двусторонняя линейка и окружность, радиус которой больше ширины линейки. За одну операцию можно либо провести прямую, либо две параллельные прямые, используя обе стороны линейки. При этом если заданы две точки, то не разрешается провести за одну операцию такие две параллельные прямые, что одна из них проходила через одну из них, а другая – через другую. За какое минимальное количество операций можно найти центр окружности?
Задачу решили:
21
всего попыток:
22
Пусть p и q – длины отрезков одной из биссектрис треугольника, получаемые разбиением её точкой пересечения биссектрис (отрезок p примыкает к вершине). Даны соответствующие отношения p:q для трёх биссектрис этого треугольника: 5:4; 7:2 и 2:1. Найдите периметр этого треугольника, если длина одной из его сторон равна 411 и искомый периметр – целое число.
Задачу решили:
11
всего попыток:
35
Имеются двусторонняя линейка и окружность, радиус которой больше ширины линейки. За одну операцию можно либо провести прямую, либо две параллельные прямые, используя обе стороны линейки. За какое минимальное количество операций можно найти центр окружности?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|