img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 33
всего попыток: 51
Задача опубликована: 17.07.17 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Взаимно простые натуральные числа p и q такие, что pn-qn+2=(p+q)n-1 (целое n>1). Найди сумму всех возможных p.

Задачу решили: 49
всего попыток: 55
Задача опубликована: 26.07.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Пусть a, b, c и d - такие действительные числа, что (a-b)/(c-d)=2, (a-c)/(b-d)=3.

Найти (d-a)/(b-c).

Задачу решили: 47
всего попыток: 62
Задача опубликована: 28.07.17 08:00
Прислал: fortpost img
Источник: Уральский турнир юных математиков
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

Шайка разбойников делила добычу, состоящую из одинаковых монет. Атаман разделил монеты поровну, но 3 монеты оказались лишними, и он забрал их себе. Разбойники рассердились, убили атамана и выбрали нового. Он также разделил монеты поровну, но 2 монеты оказались лишними, и он забрал их себе. Снова разбойники рассердились, убили атамана и выбрали нового. Третий атаман также разделил все монеты поровну, но 1 монета у него осталась, и он забрал её себе.
Этого атамана разбойники также убили. Наконец, четвёртый атаман разделил все монеты поровну и каждому из разбойников досталось по 439 монет. Какое наибольшее число монет могли делить разбойники?

Задачу решили: 34
всего попыток: 66
Задача опубликована: 04.08.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Найти все целые решения уравнения x2(y3+z3)=315(xyz+7). В ответе укажите сумму значений всех троек (xi+yi+zi), являющихся решениями.

Задачу решили: 33
всего попыток: 49
Задача опубликована: 07.08.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Пусть x, y и z - стороны треугольника такие, что x+y+z=2. При этом значения выражения xy+yz+zx-xyz находятся в диапазоне (m, n]. Найти m+n.

Задачу решили: 31
всего попыток: 55
Задача опубликована: 16.08.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Найти сумму всех простых чисел не превосходящих 900, которые могут быть представлены в виде (m3-n3)/(m2+n2-mn), где m и n - целые положительные числа.

Задачу решили: 32
всего попыток: 54
Задача опубликована: 18.08.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найти максимальное натуральное число N такое, что для некоторого натурального n и нечетного простого p верно:

p3n+1+pn+1=Np.

Это открытая задача (*?*)
Задача опубликована: 21.08.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Найдите наименьший положительный корень уравнения: 8x3-6x+1=0. Напишите точный ответ в виде математического выражения без кубических корней.

Задачу решили: 46
всего попыток: 80
Задача опубликована: 06.09.17 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: anrzej

Найти целые числа a, b и c такие, что уравнение x5+2x4+ax2+bx+c=0 имеет действительные корни только 1 и -1. В ответе укажите произведение abc.

Задачу решили: 47
всего попыток: 95
Задача опубликована: 15.09.17 08:00
Прислал: leonid img
Источник: "Квант"
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Найдите количество всех решений в целых числах уравнения х3+у3+6ху=8, принадлежащих множеству: {|x|<1000, |y|<1000}.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.