Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
15
всего попыток:
25
В выпуклом четырехугольнике два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой. Какое наименьшее количество данных о длинах нужно для нахождения площади четырехугольника?
Задачу решили:
20
всего попыток:
27
Сколько существует прямоугольных параллелепипедов с целочисленными измерениями, у которых числовые значения площади поверхности и объема равны?
Задачу решили:
18
всего попыток:
30
Касательно по внешнему контуру синей окружности располагаются одинаковые красные окружности. Которые в свою очередь касаются по внутреннему контуру зеленой окружности. Каждая красная окружность также касается двух соседних красных окружностей. На рисунке изображен пример для 4 красных окружностей. Пусть N - это минимальное количество красных окружностей, при котором их суммарная площадь будет меньше площади синей окружности. Пусть M - это минимальное количество красных окружностей при котором их удвоенная суммарная площадь будет меньше площади зеленой окружности. Найдите N+M.
Задачу решили:
17
всего попыток:
28
Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. При этом исходный треугольник оказался разделен на части. На картинке изображены треугольники при n=32. Найдите соотношение площади части, полученной в центре, к площади исходного треугольника, когда n стремится к бесконечности.
Задачу решили:
11
всего попыток:
17
4 параллельных прямых расположены на плоскости одна за другой на одинаковых растояниях. 4 других параллельных прямых, не параллельных предыдущим прямым, также расположены на той же плоскости одна за другой на одинаковых растояниях. Наконец, третья группа 4-х параллельных прямых, не параллельных предыдущим, тоже расположены на той же плоскости одна за другой на одинаковых растояниях. Эти 12 прямых делят плоскость на n областей. Найдите сумму всех возможных значений n.
Задачу решили:
22
всего попыток:
23
20 студентов сдавали экзамен по очереди. Сначала они написали на бумажках номера от 1 до 20 и случайным образом вытаскивали по одной бумажке, тот кто вытащил бумажку с номером 1, пошел сдавать первым. Затем бумажка с номером 20 была уничтожена и оставшиеся студенты снова вытаскивали бумажки и снова, вытащивший номер 1 шел следующим. Процедура повторялась каждый раз, пока все студенты не сдали экзамен. Как оказалось, у каждого студента все вытянутые им номера были различными. Староста группы в первый раз вытащил число 14. Каким по счету он пошел отвечать?
Задачу решили:
21
всего попыток:
31
Найдите наименьшее целое число L, что в квадрат L × L можно поместить прямоугольник 1 × 2024. С НОВЫМ ГОДОМ!
Задачу решили:
18
всего попыток:
23
Прямоугольник размера N x 1 помещается в прямоугольнике размера L x K. Определим функцию f(K, L) как наибольшее целое N. Найдите сумму: f(1, 6) + f(2, 6) + f(3, 6) + f(4, 6) + f(5, 6) + f(6, 6).
Задачу решили:
17
всего попыток:
19
Прямоугольник размера N x 1 помещается в прямоугольнике размера L x K. Определим функцию f(K, L) как наибольшее целое N. Найдите f(9, 12) + f(9, 13).
Задачу решили:
23
всего попыток:
25
В правильной шестиугольной призме все ребра равны. Найдите угол между прямыми A1B и B1E в градусах.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|