Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
16
всего попыток:
29
На столе расположены 2022 кучи спичек. Кучи пронумерованы: 1, 2, 3,... , 2022. В каждой k-й куче по k спичек. Играют двое поочерёдно. Каждый игрок своим ходом убирает со стола любое натуральное количество спичек из одной (любой) кучи. Выигрывает игрок, убравший последнюю спичку со стола. Сколько вариантов выигрывающего первого хода есть у начинающего?
Задачу решили:
19
всего попыток:
31
На столе расположена 2021 куча спичек. Кучи пронумерованы: 1, 2, 3,... , 2021. В каждой k-й куче по k спичек. Играют двое поочерёдно. Каждый игрок своим ходом убирает со стола любое натуральное количество спичек из одной (любой) кучи. Выигрывает игрок, убравший последнюю спичку со стола. Сколько вариантов выигрывающего первого хода есть у начинающего?
Задачу решили:
27
всего попыток:
50
Есть три коробки: в первой коробке 97 камней, во второй – 104, а в третьей коробке камней нет. За один ход берут по одному камню из любых двух коробок и кладут в оставшуюся. Сделали некоторое количество таких ходов. В первой коробке оказался 1 камень. Какое наибольшее число камней могло оказаться в третьей коробке?
Задачу решили:
30
всего попыток:
32
Сколько вариантов решений имеет тождество: пять/шесть=5/6. Различным буквам соответствуют различные цифры, одинаковым буквам соответствуют одинаковые цифры.
Задачу решили:
34
всего попыток:
106
Как много равносторонних треугольников можно составить из 6 спичек?
Задачу решили:
21
всего попыток:
79
Имеется двое песочных часов: одни отмеряют 9 минут, вторые - 22 минуты. Какое миинимальное количество раз их нужно перевернуть, чтобы отмерить 33 минуты?
Задачу решили:
28
всего попыток:
31
Из всех 10 цифр (0, 1, 2, ..., 9) составили два пятизначных числа, при этом использовали все цифры и одно число оказалось меньше второго ровно в два раза. Найдите наименьшее число.
Задачу решили:
4
всего попыток:
47
На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку: На том же рисунке также изображён квадрат размером 9x9, в котором данное полиомино помещается целиком. В этом примере полиомино занимает на листе тетрадки 10 строк и 11 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами 2 и -1/2. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата. Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами:
Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим: В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5
Задачу решили:
18
всего попыток:
32
В четыре стакана налито 2 мл, 5 мл, 15 мл, 11 мл воды. Разрешена такая операция: удвоение количества воды в стакане путём переливания из другого стакана (содержащего достаточное для этого количество воды). За какое минимальное количество операций можно опустошить два стакана? [Решения проверяются в ручном режиме. Укажите в решении, какие конкретные переливания предлагаете. Доказательство минимальности не обязательно.]
Задачу решили:
26
всего попыток:
38
В некотором заповеднике 10 львов и 15 тигров стали поедать друг друга (львы тигров, тигры львов). Лев насыщается при поедании 3-х тигров, а тигр насыщается при поедании 2-х львов. Какое наибольшее количество хищников насытятся?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|