img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 18
всего попыток: 24
Задача опубликована: 01.05.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Из каждой вершины треугольника проведены к противоположной стороне две чевианы, делящие её (противоположную сторону) на 3 равных отрезка.

Недетская классика

Исходный треугольник разделился на 19 частей: 12 треугольников, 3 четырёхугольника, 3 пятиугольника и 1 шестиугольник.

Найдите отношение площади 6-угольника к площади 5-угольника.

Задачу решили: 20
всего попыток: 25
Задача опубликована: 06.05.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральный ряд «удвоили», то есть каждое число записали дважды. Затем полученный ряд разбили на множества: M1, M2, M3, …, так, что множество Mn содержит n чисел. Ниже вертикальными черточками показано разбиение начала «удвоенного» натурального ряда на множества: 1,|1, 2,|2, 3, 3,|4, 4, 5, 5,|6, 6, 7, 7, 8,|8, 9, 9, 10, 10, 11,|11, 12, 12, 13, 13, Найдите сумму чисел в множестве M2024, укажите ее в ответе.

Задачу решили: 29
всего попыток: 32
Задача опубликована: 15.05.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найти площадь трапеции с основаниями 9 и 4, боковыми сторонами 3 и 4.

Задачу решили: 25
всего попыток: 26
Задача опубликована: 24.05.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Отрезок биссектрисы из вершины острого угла прямоугольного треугольника до точки пересечения биссектрис равен 5. Прилежащий к этой биссектрисе катет равен 7. Найти площадь треугольника.

Задачу решили: 26
всего попыток: 29
Задача опубликована: 27.05.24 08:00
Прислал: solomon img
Источник: И. Вайнштейн
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найти отношение площади описанной окружности к сумме площадей вписанной и вневписанных окружностей прямоугольного треугольника.

Задачу решили: 16
всего попыток: 20
Задача опубликована: 31.05.24 08:00
Прислал: vochfid img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

Рассматривается геометрическое место точек (ГМТ) М внутри треугольника АВС, что каждый из треугольников МАВ, МВС и МСА имеет площадь не меньше 1/2. Найдите площадь этого ГМТ, если стороны АВ, ВС и СА равны 5, 4 и 3 соответственно.

Задачу решили: 13
всего попыток: 15
Задача опубликована: 01.06.24 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На какое наименьшее число остроугольных треугольников можно разрезать прямоугольник?

Задачу решили: 12
всего попыток: 13
Задача опубликована: 03.06.24 08:00
Прислал: Vkorsukov img
Источник: Подражение задаче 2643
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Kf_GoldFish

Найти пифагоров треугольник с наименьшим периметром, в который можно вписать две одинаковые окружности с радиусами больше 10, при этом одна окружность касается гипотенузы, катета и чевианы из прямого угла, а другая - гипотенузы, второго катета и той же чевианы. В ответе укажите периметр найденного треугольника.

+ 2
  
Задачу решили: 12
всего попыток: 17
Задача опубликована: 10.06.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: user033 (Олег Сopoкин)

На шестиугольной сетке ячейки закрашены следующим: красится одна ячейка и все, расположенные вдоль трех прямых, проходящих через центр начальной ячейки и образующих между собой шесть «углов» величиной 60°. В каждом из этих «углов» красятся ячейки, образующие новые «углы» величиной 60° так, что между ними образуются «углы» из незакрашенных ячеек, и так далее до бесконечности.

Снежинки

Закрашенные ячейки в «правильных шестиугольниках» с центром в начальной образуют «снежинки». Число ячеек в этих «снежинках» задают последовательность  1, 7, 13, 19, 31, 49, 67, … Найдите номер «снежинки», которая содержит 15151 ячейку.

Задачу решили: 10
всего попыток: 22
Задача опубликована: 12.06.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Lec

Имеются двусторонняя линейка и окружность, радиус которой больше ширины линейки. За одну операцию можно либо провести прямую, либо две параллельные прямые, используя обе стороны линейки. При этом если заданы две точки, то не разрешается провести за одну операцию такие две параллельные прямые, что одна из них проходила через одну из них, а другая – через другую. За какое минимальное количество операций можно найти центр окружности?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.