Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
33
всего попыток:
99
Окружность S и лежащая на ней точка P(a,b) обладают следующими свойствами: (i) Касательная в точке P проходит через начало координат. Для точки P(a,b) обозначим за M и m максимум и минимум выражения Найдите 36M + 27m2.
Задачу решили:
39
всего попыток:
61
На окружности O взяты точки A и B. Касательные, построенные в точках A и B, пересекаются в точке C. На продолжении отрезка CA за точку A выбрана точка D так, что |AD| = 30, а на продолжении отрезка BC за точку C - точка E так, что |BE| = 60. Прямая BA пересекает отрезок DE в точке P. Зная, что |DE| = 66, найдите длину отрезка DP.
Задачу решили:
34
всего попыток:
48
В тупоугольном равнобедренном треугольнике AB1B2 известны стороны |AB1| = |AB2| = 8. Проходящие через вершину A прямые li (i = 1,2) пересекают окружности с центрами Bi и радиусами 6 в точках Pi, Qi. Описанная окружность треугольника AP1P2 имеет радиус 2, |AQ1| = 9, |AQ2| = 11. Найдите |Q1Q2|2.
Задачу решили:
39
всего попыток:
128
Биссектриса угла C треугольника ABC пересекает сторону AB в точке D. Прямая, проведенная через точку B параллельно CD, пересекается с прямой AC в точке E. |AD| = 4, |BD| = 6, |BE| = 15. Прямая BE пересекает внешнюю биссектрису угла A треугольника ABC в точке P. Найдите (|PB| - |AB|)2.
Задачу решили:
32
всего попыток:
45
В остроугольном треугольнике ABC ∠B = 70°. Из точек A, B, C на противоположные стороны треугольниика опущены высоты с основаниями D, E, F соответственно. Из точки E на сторону BC опущен перпендикуляр с основанием H. Прямая, проходящая через середину M отрезка AE и точку D, пересекает прямую EH в точке K. Прямая, проведенная через точку H перпендикулярно AB, пересекает прямую EF в точке L. ∠KLH = 80°, |DK| = 50. Найдите длину отрезка LH.
Задачу решили:
68
всего попыток:
107
Алекс и Борис бегут супермарафон длиной 70 км. Скорость Алекса 7 км/ч, а Бориса - 10 км/ч. Однако Борис в любой момент может изменить скорость на 5 км/ч и бежать медленнее до самого конца. С какой вероятностью Алекс победит?
Задачу решили:
23
всего попыток:
107
Три точки выбираются случайным образом из внутренней части единичного круга. Найдите вероятность того, что окружность, проходящая через эти три точки лежит целиком внутри единичной окружности.
Задачу решили:
23
всего попыток:
76
С вершины небольшой горы к ее подножью проложена железная дорога с боковым тупиком, вмещающим 10 вагонов. Все возможные направления движения показаны на картинке стрелками. На вершине горы находятся 10 вагонов с номерами от 1 до 10, но их порядок неизвестен. Работа машиниста Вовы - свозить по одному вагоны так, чтобы внизу они оказались в обычном порядке: 1, 2, ..., 10. Для сортировки можно пользоваться тупиком. На картинке показаны два случая, когда всего 5 вагонов - в одном варианте Вова может выполнить задание, в другом - нет. Найдите вероятность того, что Вова не сможет выполнить задание (для 10 вагонов).
Задачу решили:
28
всего попыток:
118
На листке первый игрок записал число 0. Затем по очереди справа к выражению второй пишет знак плюс или минус, а первый одно из натуральных чисел от 1 до 2015. Оба делают по 2015 ходов, причем первый записывает каждое из чисел от 1 до 2015 ровно по одному разу. В конце игры первый игрок получает выигрыш, равный модулю алгебраической суммы, написанной на листке. Какой наибольший выигрыш он может себе гарантировать?
Задачу решили:
33
всего попыток:
80
За круглым столом сидит компания из тридцати человек. Каждый из них либо дурак, либо умный. Всех сидящих спрашивают: - Кто Ваш сосед справа — умный или дурак? В ответ умный говорит правду, а дурак может сказать как правду, так и ложь. Известно, что количество дураков не превосходит F. При каком наибольшем значении F всегда можно, зная эти ответы, указать на умного человека в этой компании?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|