Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
99
всего попыток:
271
Можно ли из нескольких остроугольных треугольников сложить тупоугольный? (Если можно — укажите минимальное число остроугольных треугольников, если нельзя — введите 0. Накладывать треугольники друг на друга и оставлять пустоты нельзя.)
Задачу решили:
165
всего попыток:
428
Какое наименьшее число точек нужно стереть с рисунка так, чтобы нельзя было нарисовать ни одного квадрата с вершинами в оставшихся точках?
Задачу решили:
91
всего попыток:
240
На плоскости лежат круг радиуса 1 см и точка, удалённая от его центра на 60 см. Точку разрешается симметрично отразить относительно любой прямой, пересекающей круг. За какое минимальное число таких последовательных отражений Вам удастся переместить точку внутрь круга?
Задачу решили:
54
всего попыток:
795
Играют двое. У первого есть монеты достоинством в 2 рубля и 5 рублей. Одну из них (по своему выбору) он зажимает в кулаке, а второй игрок пытается угадать, что это за монета. Если тот угадывает, то получает монету, а если нет, то платит первому игроку m копеек. Найдите наибольшее целое m, при котором игра выгодна второму игроку.
Задачу решили:
49
всего попыток:
95
В выпуклом 2010-угольнике отметили некоторые точки (не являющиеся его вершинами) так, что в произвольном треугольнике, образованном любыми тремя вершинами 2010-угольника, нашлась отмеченная точка. Найдите наименьшее число отмеченных точек.
Задачу решили:
41
всего попыток:
54
Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых — целые числа. Может ли площадь четырёхугольника быть простым числом?
Задачу решили:
49
всего попыток:
143
На квадратном торте лежат n не соприкасающихся друг с другом треугольных шоколадок. Для каких n торт всегда (т.е. при любых размерах и расположении шоколадок) можно разрезать на куски в форме выпуклых многоугольников так, чтобы каждый кусок содержал ровно одну шоколадку? (Шоколадки резать нельзя!) Если Ваш ответ "для всех" — введите 0, в противном случае — наибольшее возможное значение n.
Задачу решили:
129
всего попыток:
185
Найдите сумму тангенсов всех углов треугольника при условии, что все три тангенса — целые числа.
Задачу решили:
38
всего попыток:
124
Треугольник, лежащий на координатной плоскости, обладает следующим свойством: при его параллельном переносе на любой ненулевой вектор, обе координаты которого кратны 30, сдвинутый треугольник не перекрывает исходный (т.е. их внутренности не пересекаются). Найти наибольшую площадь исходного треугольника.
Задачу решили:
179
всего попыток:
419
Медиана, проведённая к одной из боковых сторон равнобедренного треугольника, делит его периметр на две части, длины которых равны 12 и 21. Найдите длину основания. (Если ответов несколько, введите их произведение.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|