img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Mika решил задачу "Строчка цифр" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 31
всего попыток: 42
Задача опубликована: 26.11.09 10:00
Прислал: TALMON img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: min

Представить в конечном виде: Cn0·xnCn1·(x−1)n+Cn2·(x−2)nCn3·(x−3)n+...+(−1)n·Cnn·(xn)n, где Cnk=n!/(k!·(n-k)!), n!=1·2·3·...·n, а 0!=1.

Задачу решили: 75
всего попыток: 259
Задача опубликована: 17.09.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько положительных действительных решений имеет каждое из следующих уравнений:

Напишите оба числа подряд, без пробелов. Порядок "многоэтажного" возведения в степень — сверху вниз. Формально в левой части каждого из уравнений написан предел:

Задачу решили: 78
всего попыток: 278
Задача опубликована: 12.11.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100

Даны четырёхугольник ABCD, в котором ΑΒ=25, BC=17, CD=26, DA=15; и ещё две точки: точка E на стороне AB и точка F на стороне CD такие, что AE=10, EB=15, CF=9 и FD = 17. Пусть K - точка пересечения отрезков AF и DE, L - точка пересечения отрезков EC и BF, M - точка пересечения отрезков AC и BD. Чему равен угол KML (в градусах, округляя до целого числа)?

Задачу решили: 40
всего попыток: 114
Задача опубликована: 19.12.10 08:00
Прислал: TALMON img
Источник: Euler Project
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Для натурального числа n обозначим C(n) количество натуральных чисел x меньших n, для которых x2+x+1 делится на n. Чему равно C(p), если p — простое? В ответе напишите без пробелов значения C(k·2k−1) при k=115, 123, 249, 362 и 384. Учтите, что числа k·2k−1 являются простыми при всех указанных значениях k.

Задачу решили: 33
всего попыток: 174
Задача опубликована: 14.03.11 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: 0Vlas

Для изготовления цилиндрических труб диаметра 10 см используются прямоугольные заготовки шириной примерно 31.41592657 см. Но нужно изготовить две трубы, чтобы затем соединить их перпендикулярно. Поэтому одну сторону каждой из двух заготовок–прямоугольников нужно заменить на какую-то кривую. На рисунке она изображена как полуокружность, но на самом деле это другая кривая. Проведём на плоскости заготовки систему декартовых координат: ось x ровно по тому месту, где заготовка начинает закругляться, а ось y — как направленную вверх ось симметрии вдоль заготовки. Пусть y=f(x) — кривая стыковки. Чему равно число 100f''(0)? (Вторая производная при x=0, умноженная на 100.) Результат округлите до целого числа.

Задачу решили: 33
всего попыток: 185
Задача опубликована: 24.08.11 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Timur

Определим две последовательности многочленов: S0(x)=C0(x)=1, C1(x)=x, Sn+1(x)=Cn+1(x)+xSn(x), Cn+2(x)=xCn+1(x)+x2Sn(x)−Sn(x). Сколько различных действительных корней имеет многочлен C2011(x) в интервале (−1/2, 1/2)?

(Задача изменена, следуя zmerch(у)!)
Задачу решили: 75
всего попыток: 122
Задача опубликована: 05.03.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Рассмотрим ряд Тейлора функции:

f(x) = 1/(1-x-x²)

в окрестности x=0. Чему равен коэффициент этого ряда при x10?

Задачу решили: 29
всего попыток: 405
Задача опубликована: 24.10.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Angelina

Дан треугольник ABC.

Дан ещё один треугольник BCD, точки A и D находятся на той же стороне от прямой BC, и углы: CAB=DBC, ACB=BDC.

Дан ещё один треугольник CDE, точки B и E находятся на той же стороне от прямой CD, и углы: DBC=ECD, BDC=CED.

Дан ещё один треугольник DEF, точки C и F находятся на той же стороне от прямой DE, и углы: ECD=FDE, CED=DFE.

И так далее по алфавиту почти до конца: последний треугольник - WXY.

Чему равна длина отрезка AY, если |AB|=1, |BC|=31/2, а угол ABC=5π/6?

Задачу решили: 23
всего попыток: 67
Задача опубликована: 31.05.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Доска 16х16 разделена на квадраты со стороной длины 1. Сколько сушествует троек различных узлов доски, через которые проходит парабола?

Задачу решили: 46
всего попыток: 196
Задача опубликована: 13.09.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Темы: геометрияimg
Лучшее решение: levvol

Рассмотрим множество парабол, уравнения которых имеют вид y=ax²+b, где a и b принимают все целые значения от 1 до 10 включительно. Т.е. всего 100 парабол.

Сколько в этом множестве пар подобных парабол?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.