Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
37
На гипотенузе АВ треугольника АВС во внешнюю сторону построен квадрат ABDE. Отношение длин катетов ВС:АС=1:2. Прямая CD пересекает отрезок АВ в точке К . Прямая, перпендикулярная к CD, проведенная через точку К пересекает отрезок АЕ в точке М. Найти отношение длин отрезков АМ/МЕ.
Задачу решили:
28
всего попыток:
31
На катетах треугольника АВС (АС=12, ВС=5) построены во внешнюю сторону квадраты АСKL и BCMN. Прямые BL и AN, пересекаясь между собой в точке R, пересекаются соответственно с катетами АС и ВС в точках P и Q. Найти модуль разности площадей четырехугольника CPRQ и треугольника ABR.
Задачу решили:
21
всего попыток:
30
Прямоугольная трапеция с целочисленными основаниями с вписанной окружностью и с целочисленным радиусом такова, что она равновелика квадрату с целочисленной стороной. При этом известно, что длина малого основания трапеции является простым числом. Найти сумму длин сторон первых трех таких квадратов (по возрастанию).
Задачу решили:
25
всего попыток:
61
Как показано на рисунке △ABC разделяется на 3 части линиями DE и FG. DE || BC. FG делит трапецию BDEC на два "воздушных змея" BFGC и FDEG, все длины сторон в которых являются целыми числами. |GF| = |GC| = |GE| = 17, а |BD| = 35. Найти площадь синего треугольника △ADE.
Задачу решили:
27
всего попыток:
35
С вершины А треугольника АВС проведена медиана АD. Стороны |АВ|:|АС|=1:2. На отрезке BD стороны ВС отмечена точка Е так, что угол ЕАВ равен углу CAD. Найти отношение |ВЕ|/|ED|.
Задачу решили:
25
всего попыток:
27
Параллелограмм разделён на четыре треугольника так, как показано на рисунке. Площади красного, желтого, зелёного треугольников составляют соответственно последовательные натуральные числа. Чему равна площадь красного треугольника, если площадь оранжевого равна 2584?
Задачу решили:
25
всего попыток:
29
Стороны треугольника по часовой или против часовой стрелке разделены точками соответственно 1:1, 1:2, 1:3. Чевианы к этим точкам внутри треугольника образовывают треугольник при взаимном пересечении. Найти отношение площади этого треугольника к площади заданного.
Задачу решили:
19
всего попыток:
25
Рассмотрим бесконечную клетчатую плоскость, в каждую клетку которой вписано число натурального ряда, – по порядку, начиная с 1, следуя по спирали (см. рис.). Спираль для определенности будем считать закручивающейся по часовой стрелке. Введем прямоугольную систему координат с началом в центре клетки с числом 1 и осями, параллельными сторонам клеток. Нарисуем в ней четыре параболы y=x3, y=–x3, x=y3 и x=–y3. Рассмотрим на параболах точки с целыми координатами. Каждая такая точка определяет клетку плоскости, а значит, и написанное в ней число. Например, точке параболы (0; 0) соответствует число 1, точке (1; 1) — число 9, а точке (2; 8) — число 283. Все такие числа выделены зеленым цветом. Сгруппируем выделенные числа так, чтобы все они (кроме центральной единицы) лежали на концентрических окружностях. На рисунке приведены первые две окружности. Найдите среднее арифметическое чисел, расположенных на 10-ой окружности и укажите его в ответе.
Задачу решили:
22
всего попыток:
25
Трапеция, у которой точки середин всех сторон принадлежат одной окружности, имеет боковые стороны 7 и 4, малое основание 1. Найти длину большого основания.
Задачу решили:
26
всего попыток:
31
В прямоугольнике ABCD проведены отрезки AL (L - середина ВС), DK (K - середина AL), CN (N - середина DK), LM (M - середина СN). Найти отношение площади четырехугольника KLMN к площади прямоугольника ABCD.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|