Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
130
всего попыток:
267
Перед Вами в ряд лежат 9 арбузов общим весом 70 кг. Для каждого арбуза (кроме первого и последнего) известен общий вес двух его соседей. У какого наибольшего числа арбузов можно однозначно определить вес?
Задачу решили:
69
всего попыток:
191
На листке написано несколько различных действительных чисел. Среди любых трёх из них обязательно найдутся два, сумма которых тоже написана на листке. Какое наибольшее количество чисел может быть на листке?
Задачу решили:
103
всего попыток:
259
На шахматной доске случайным образом расставлены 2 фигуры: король и ладья. С какой вероятностью король бьет ладью?
Задачу решили:
88
всего попыток:
111
Пусть — многочлен от переменной с чётными целыми коэффициентами, и — такие целые числа, что . Найдите наибольшее возможное значение разности .
Задачу решили:
37
всего попыток:
310
В шахматной композиции (задачах) есть раздел сказочных шахмат. В этих задачах изменены или дополнены некоторые шахматные правила (фигуры, форма шахматной доски и т.п.). Рассмотрим сказочные шахматы, в которых короли могут находиться под боем (шахом), а значит возможно и взятие королей. Остальные шахматные правила оставляем в силе. Целью такой игры может быть, например, взятие всех неприятельских фигур (как в шашках). Среди всех возможных позиций, полученных из начальной шахматной позиции играя по этим правилам, присутствуют и позиции только с двумя фигурами — белым королём и чёрным слоном, в которых белые начинают и выигрывают в один ход. Вычислите вероятность возникновения такой позиции при случайной расстановке белого короля и чёрного слона на пустую шахматную доску.
Задачу решили:
105
всего попыток:
148
Какова максимальная разность арифметической прогрессии, среди членов которой есть числа 1/11, 1/13, 1/17?
Задачу решили:
64
всего попыток:
99
Числа x, x−5, x+5 — квадраты рациональных чисел. Найдите x.
Задачу решили:
123
всего попыток:
164
Утроенная сумма двух положительных чисел не больше их произведения. Найдите наименьшее значение суммы этих чисел.
Задачу решили:
60
всего попыток:
82
Найдите сумму наибольших нечётных делителей всех целых чисел от n+1 до 2n включительно, где n — целое и n>0. В ответе укажите её значение при n=2011.
Задачу решили:
99
всего попыток:
154
Имеется 4023 последовательных натуральных числа. Известно, что сумма квадратов первых 2012 чисел равна сумме квадратов последних 2011 чисел. Найдите первое число.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|