img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 36
всего попыток: 54
Задача опубликована: 29.03.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Куб распилили по 3-м плоскостям XOY, XOZ, YOZ и получили 8 брусков, у семи из которых известны площади поверхностей 148, 126, 88, 72, 58, 46, 28. Найти длину ребра куба.

Задачу решили: 27
всего попыток: 79
Задача опубликована: 10.04.19 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На какое наименьшее число частей можно разрезать поверхность правильного тетраэдра так, чтобы оклеить куб без пробелов и наложений?

Задачу решили: 42
всего попыток: 46
Задача опубликована: 26.07.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: solomon

Вычислите значение выражения \frac{lg 1\frac{1}{10}}{lg 10 \cdot lg 11}+\frac{lg 1\frac{1}{11}}{lg 11 \cdot lg 12}+...+ \frac{lg 1\frac{1}{99}}{lg 99 \cdot lg 100.

 

Задачу решили: 13
всего попыток: 30
Задача опубликована: 18.09.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

Бумажную полосу 1х50 расчертили на единичные квадраты, пронумеровали их по порядку числами от 1 до 50, после чего полосу разрезали на десять малых полос 1х5. Пять вертикальных и пять горизонтальных полос переплели друг с другом так, что единичные квадраты каждой полосы чередуются положением верх-низ. Получился числовой квадрат или матрица 5х5. Одна из возможных плетенок и соответствующая ей матрица показана на рисунке.

Плетёнка 5х5

Сколько различных матриц 5х5 может получиться? Поворот на угол кратный 90 градусам новой матрицы не дает, ориентация чисел значения не имеет.

Задачу решили: 36
всего попыток: 45
Задача опубликована: 16.10.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Функция f отображает натуральные числа в натуральные числа такая, что f(a)f(b) = f(ab), f(a) < f(b), если a < b, f(3) > 6. Найдите минимально возможное значение f(3).

Задачу решили: 40
всего попыток: 42
Задача опубликована: 18.10.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Пусть P(n) - произведение цифр натурального числа n. Найдите сумму всех n таких, что n2-17n+56=P(n).

Задачу решили: 41
всего попыток: 43
Задача опубликована: 30.10.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

1+xz+yz=НОК(xz,yz), где x, y и z - натуральные числа, а НОК - наименьшее общее кратное. Найти наибольшее значение произведения xyz.

Задачу решили: 15
всего попыток: 16
Задача опубликована: 01.11.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Укажите необходимое и достаточное условие для целого числа N такого, что для любых многочленов с действительными коэффициентами P(x) и Q(x), для которых P(Q(x)) является многочленом степени N, существует действительное число a, при котором P(a)=Q(a).

Задачу решили: 32
всего попыток: 34
Задача опубликована: 18.12.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральное число n не делится на 3. Пусть A(n) - это сумма делителей числа n, которые при делении на 3 дают в остатке 1, и B(n) - это сумма делителей, которые при делении на 3 дают в остатке 2. Найдите сумму всех таких n, для которых |A(n)-B(n)|2 < n.

Задачу решили: 56
всего попыток: 66
Задача опубликована: 01.01.20 08:00
Прислал: avilow img
Источник: Ростовская математическая олимпиада, II этап
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Последовательность задана рекуррентным способом: a1=2, a2=2, an+2=an+1/an. Найдите сумму 1730 первых членов этой последовательности.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.