Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
145
всего попыток:
199
Найдите максимально возможное целое значение отношения (x+y+z)2/(xyz), где x, y и z — положительные целые числа.
Задачу решили:
35
всего попыток:
46
Доказать, что степень двойки 2n при любом целом n>2 представляется в виде 2n=7x2+y2, где x и y — нечётные целые числа.
Задачу решили:
36
всего попыток:
61
Найдите действительные числа x, y и z, удовлетворяющие следующим уравнениям и неравенствам: x–2y–xy2=0, y–2z–yz2=0, z–2x–zx2=0, x>y>z. В ответе укажите значение x.
Задачу решили:
41
всего попыток:
54
Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых — целые числа. Может ли площадь четырёхугольника быть простым числом?
Задачу решили:
129
всего попыток:
185
Найдите сумму тангенсов всех углов треугольника при условии, что все три тангенса — целые числа.
Задачу решили:
137
всего попыток:
191
Представить сумму 1/(22−1)+1/(42−1)+1/(62−1)+1/(82−1)+...+1/(20102−1) в виде несократимой дроби. В ответе указать сумму числителя и знаменателя.
Задачу решили:
26
всего попыток:
42
Может ли множество всех положительных действительных чисел являться множеством значений многочлена с действительными коэффициентами от двух действительных переменных?
Задачу решили:
182
всего попыток:
229
Собранный мёд заполняет несколько 50-литровых бидонов. Если его разлить в 40-литровые бидоны, то понадобится на 5 бидонов больше, и один из них останется неполным. Если собранный мёд разлить в 70-литровые бидоны, то понадобится на 4 бидона меньше, и один из них тоже останется неполным. Сколько 50-литровых бидонов заполняет собранный мёд?
Задачу решили:
104
всего попыток:
214
На доске в строчку выписаны пять неотрицательных целых чисел A, B, C, D и E, сумма которых равна 2010. Найдите наибольшее значение суммы AB+BC+CD+DE попарных произведений соседних чисел.
Задачу решили:
109
всего попыток:
316
Две лягушки, большая и маленькая, прыгают по дорожке. Сначала они находятся рядом и первый прыжок совершают одновременно. Затем маленькая лягушка прыгает на 5 см каждую секунду, а большая — на 20 см каждые 3 секунды, но зато после каждого третьего прыжка отдыхает лишние 6 секунд, т.е. два своих следующих прыжка она пропускает. В результате маленькая лягушка то обгоняет большую, то отстаёт от нее. После скольких (своих) прыжков маленькая лягушка опередит большую так, что большая лягушка её больше не нагонит? (Считайте, что все прыжки совершаются почти мгновенно.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|