img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: putout решил задачу "35 кг сахара" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 55
всего попыток: 73
Задача опубликована: 10.12.18 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Два бизнесмена вложили деньги в общее дело вместе 17 млн. рублей. Через неделю один из них вложил еще дополнительно деньги. Сколько всего в итоге он вложил денег (в миллионах), если его новая доля в общей оказалась в 7 раз больше прежней, тогда как доля другого в 5 раз меньше прежней?

Задачу решили: 43
всего попыток: 45
Задача опубликована: 05.04.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: avilow (Николай Авилов)

Найти наименьшее решение уравнения:

x=\sqrt{(2-x)*(3-x)}+\sqrt{(5-x)*(3-x)}+\sqrt{(2-x)*(5-x)}

Задачу решили: 43
всего попыток: 55
Задача опубликована: 17.04.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Если 
x+\frac{1}{x}=6 и  x^2+\frac{1}{x^3}=46,

то чему равно x^3+\frac{1}{x^2}.

Задачу решили: 54
всего попыток: 90
Задача опубликована: 29.04.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Гимнасты одного веса построили пирамиду, изображенную на рисунке.

Пирамида гимнастов

Найдите вес одного гимнаста, если известно, что центральный гимнаст нижнего ряда давит на пол весом 264 кг.

Задачу решили: 33
всего попыток: 35
Задача опубликована: 15.05.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: avilow (Николай Авилов)

Приведенные квадратные трехчлены, каждый из которых имеет два различных корня, f(x) и g(x) таковы, что f(2)=g(3), f(3)=g(2), f(a)=0, f(b)=0, g(c)=0, g(d)=0, a≠b, c≠d. Найти a+b+c+d.

Задачу решили: 34
всего попыток: 48
Задача опубликована: 03.07.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Buuul (Майк Бул)

Пусть x, y, z не равные нулю целые числа. Найти количество решений уравнения x8+y4=z2

Задачу решили: 37
всего попыток: 40
Задача опубликована: 05.07.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

a/(b+c)+b/(a+c)+c/(a+b)=1. Найти a2/(b+c)+b2/(a+c)+c2/(a+b).

 

Задачу решили: 26
всего попыток: 42
Задача опубликована: 22.07.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: anrzej

На плоскости расположен равносторонний треугольник с длиной стороны x и точка. От точки до вершин треугольника расстояния 3, 5 и 7. Найдите все возможные треугольники и соответствующие им длины стороны x. В ответ введите сумму квадратов полученных значений различных x.

Задачу решили: 37
всего попыток: 45
Задача опубликована: 16.08.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: MMM (MMM MMM)

Натуральные числа m и n такие, что 2mn=(m+4)*(n+4) и m<n. Найдите сумму всех возможных m.

Задачу решили: 26
всего попыток: 27
Задача опубликована: 28.08.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Функция f определена на множестве целых чисел, принимает только целые числа и при этом f(2m)+2f(n)=f(f(m+n)) для всех целых m и n. Найдите максимальное возможное значение f(2019), если f(0)=2019.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.