Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
123
всего попыток:
397
Найдите минимальное время в секундах, за которое можно поджарить 7 котлет, если на сковороде умещается 6 котлет, и с каждой стороны котлету нужно жарить ровно 5 минут.
Задачу решили:
40
всего попыток:
71
Найдите наибольшее натуральное k, удовлетворяющее следующему условию: если в 2013 мешках разложены гири, вес каждой гири – степень двойки и суммарный вес гирь в каждом мешке один и тот же, то найдутся k гирь одного веса.
Задачу решили:
47
всего попыток:
101
В натуральном числе поменяли местами некоторые цифры, стоящие в четных позициях, не тронув цифры в нечетных позициях. Пусть C - сумма цифр разности исходного и полученного чисел и 0<=C<=40. Укажите сумму всех возможных значений C.
Задачу решили:
79
всего попыток:
139
Найти произведение всех целых чисел m таких, что m4-3m2+9 является простым числом.
Задачу решили:
29
всего попыток:
192
Из целого числа A вычли число B, полученное перестановкой цифр A. A-B состоит из 2013 единиц. Все эти числа (A, B, A-B, 2013) даны в n-ичной системе счисления. Введите (в 10-ичной системе счисления) сумму всех возможных значений n.
Задачу решили:
52
всего попыток:
72
В натуральном числе W все N цифр различны и расположены в порядке убывания. Сумма чисел, полученных всевозможными перестановками цифр числа W, включая W, делится на 1419. Найти все такие числа W и ввести их сумму.
Задачу решили:
45
всего попыток:
166
В натуральном числе W все N цифр различны. Сумма чисел, полученных всевозможными перестановками цифр числа W, включая W, делится на 1353. Определить все возможные значения N, для которых такие числа существуют, и ввести их сумму.
Задачу решили:
67
всего попыток:
122
За один ход с числом делается такая операция: если число не делится на 3, то вычитаем 1, а если делится, то делим на 3. Сколько существует таких чисел, из которых ровно за 13 ходов получается единица?
Задачу решили:
70
всего попыток:
122
120 школьников выстроили друг за другом. Никакие две девочки не стоят ни дружка за дружкой, ни через семь человек. Найти максимальное количество девочек.
Задачу решили:
92
всего попыток:
109
Найдите коэффициент при x у многочлена
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|