Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
257
всего попыток:
410
Путешественник заблудился на острове, где живут два племени: Правдивые (всегда говорят правду) и Лживые (всегда лгут). Выглядят они одинаково, говорят на одном языке и свободно передвигаются по всему острову. Из леса выходит туземец, у которого путешественнику нужно узнать, на чьей территории он сейчас находится. Каким наименьшим числом вопросов сможет обойтись путешественник?
Задачу решили:
175
всего попыток:
314
Есть весы, показывающие точный вес, и 6 одинаковых на вид монет, одна из которых фальшивая: её вес отличается от веса настоящей монеты (веса настоящих монет одинаковы). За какое наименьшее число взвешиваний можно наверняка определить вес настоящей монеты и вес фальшивой?
Задачу решили:
124
всего попыток:
259
Три миссионера и три аборигена хотят переправиться через реку на лодке, которая вмещает только двоих. Если миссионеры окажутся в меньшинстве на берегу или рядом с берегом, то аборигены их сразу съедят. За какое наименьшее число рейсов все они смогут безопасно переправиться на другой берег? (Рейсы нужно считать все: туда и обратно — это два рейса.)
Задачу решили:
175
всего попыток:
305
Чтобы от театра доехать до цирка, можно сесть на остановке на автобус №1 или на автобус №2. Они ходят с постоянными интервалами, причем автобус №1 в 2 раза реже, чем №2. За последние 20 минут автобус прошёл 16 минут назад, 10 минут назад и 2 минуты назад. Через сколько минут придёт следующий автобус?
Задачу решили:
109
всего попыток:
210
В самолёте летели пионеры. Среди них были (хотя бы в количестве одного) пятиклассники, шестиклассники и семиклассники (других не было). Если выбрать любых 100 пионеров, среди них обязательно окажутся пятиклассник и шестиклассник. Какое наибольшее количество пионеров могло лететь в самолёте?
Задачу решили:
110
всего попыток:
160
Сколькими способами можно расставить в ряд все десять цифр от 0 до 9 включительно так, чтобы сумма любых трёх из них, идущих подряд, не превышала 12?
Задачу решили:
60
всего попыток:
97
Конь может сделать N ходов (N≥2) и вернуться в исходную клетку, побывав при этом на всех горизонталях и вертикалях шахматной доски N×N. Найдите сумму всех возможных значений N.
Задачу решили:
122
всего попыток:
257
В ряду 10 монет. Сначала подряд лежат несколько (от 1 до 9) настоящих, которые весят по 10 граммов, а все следующие за ними — фальшивые, весящие по 9 граммов. За какое минимальное число взвешиваний на чашечных весах без гирь можно определить, какие монеты — настоящие, а какие — фальшивые?
Задачу решили:
176
всего попыток:
324
Найдите количество различных трёхзначных чисел, сумма цифр которых делится на 13.
Задачу решили:
62
всего попыток:
251
Имеется предмет, о котором известно, что его вес составляет целое число кг от 1 до 27. Также есть чашечные весы, на обе чашки которых можно класть гири. Определите наименьшее количество гирь, с помощью которых можно определить вес предмета.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|