Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
146
всего попыток:
188
На гипотенузе прямоугольного треугольника с длинами катетов 21 и 28 построен квадрат. Отрезок, соединяющий точку пересечения диагоналей квадрата с вершиной прямого угла треугольника, делит его гипотенузу на отрезки. Найдите произведение длин этих отрезков.
Задачу решили:
135
всего попыток:
189
Найти площадь треугольника, высоты которого равны: 12, 63/5, 252/13.
Задачу решили:
54
всего попыток:
103
В треугольнике АВС из вершины А проведены две прямые, пересекающие основание ВС. При этом диаметры вписанных окружностей трёх образовавшихся треугольников равны между собой. Найти отношение высоты, опущенной из вершины А на сторону ВС, к диаметру этих окружностей, если величина угла В — 70°, а С — 80°. Ответ округлите до ближайшего целого числа.
Задачу решили:
99
всего попыток:
271
Можно ли из нескольких остроугольных треугольников сложить тупоугольный? (Если можно — укажите минимальное число остроугольных треугольников, если нельзя — введите 0. Накладывать треугольники друг на друга и оставлять пустоты нельзя.)
Задачу решили:
49
всего попыток:
95
В выпуклом 2010-угольнике отметили некоторые точки (не являющиеся его вершинами) так, что в произвольном треугольнике, образованном любыми тремя вершинами 2010-угольника, нашлась отмеченная точка. Найдите наименьшее число отмеченных точек.
Задачу решили:
41
всего попыток:
54
Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых — целые числа. Может ли площадь четырёхугольника быть простым числом?
Задачу решили:
38
всего попыток:
124
Треугольник, лежащий на координатной плоскости, обладает следующим свойством: при его параллельном переносе на любой ненулевой вектор, обе координаты которого кратны 30, сдвинутый треугольник не перекрывает исходный (т.е. их внутренности не пересекаются). Найти наибольшую площадь исходного треугольника.
Задачу решили:
74
всего попыток:
343
Деревянный куб с ребром 10 см требуется оклеить в один слой цветной бумагой, вырезав при этом только одну заготовку из бумажного квадрата со стороной n см. Найти наименьшее n, при котором это возможно.
Задачу решили:
77
всего попыток:
149
В круге радиуса 10 см на расстоянии 5 см от его центра отмечается точка. Через неё проводятся две перпендикулярные прямые, одна из которых проходит через центр круга. Затем обе прямые поворачиваются на 30° относительно отмеченной точки против часовой стрелки. При этом хорды, лежащие на прямых, заметают часть круга, показанную на рисунке. Сколько см2 составляет её площадь? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
64
всего попыток:
251
Из 144 спичек сложили квадрат 8×8, состоящий из 64 маленьких квадратиков 1×1. Какое наименьшее число спичек нужно убрать, чтобы разрушить все квадраты? (Т.е. в периметре каждого квадрата произвольного размера от 1×1 до 8×8 не должно хватать хотя бы одной спички.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|