img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 124
всего попыток: 266
Задача опубликована: 17.11.10 08:00
Прислал: Busy_Beaver img
Источник: Кубок памяти Колмогорова
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

В кубике покрашено n рёбер, но неизвестно какие. При каком наименьшем n можно гарантировать, что найдется грань с четырьмя окрашенными ребрами?

Задачу решили: 64
всего попыток: 209
Задача опубликована: 27.04.11 08:00
Прислал: Primazon img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Каждую грань куба разбили на 16 равных квадратиков, которые раскрасили в красный, синий и белый цвета так, что квадраты, имеющие общую сторону, оказались окрашены в разные цвета. Найдите наибольшее возможное число красных квадратов.

Задачу решили: 48
всего попыток: 135
Задача опубликована: 21.09.11 08:00
Прислал: zmerch img
Источник: Задачи 550, 573
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Каждую грань параллелепипеда 3х5х7 разбили на единичные квадратики, которые раскрасили в красный, синий и белый цвета так, что квадраты, имеющие общую сторону, оказались окрашены в разные цвета. Найдите наибольшее возможное число красных квадратов.

Задачу решили: 36
всего попыток: 142
Задача опубликована: 05.05.12 08:00
Прислал: zmerch img
Источник: ВЗМШ
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Проведём сечение трёхмерного куба, перпендикулярное диагонали куба и проходящее через её середину. В результате получится правильный шестиугольник. А теперь рассмотрим четырёхмерный куб. Какое тело получится в сечении, перпендикулярном диагонали четырёхмерного куба и проходящем через её середину? В ответе укажите сумму количеств вершин и граней.

Задачу решили: 52
всего попыток: 269
Задача опубликована: 15.06.12 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В куб с ребром 3 вписаны 2 шара: один диаметром 2, касается трех граней, нижней и двух боковых, другой стоит на первом и тоже касается трех граней - тех же боковых и верхней. Чему равен диаметр верхнего шара? Ответ ввести с точностью до 2 знаков после запятой.

Задачу решили: 49
всего попыток: 111
Задача опубликована: 18.06.12 22:57
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Через каждую вершину единичного куба проходит плоскость, все восемь плоскостей параллельны друг другу, а расстояния между соседними плоскостями равны. Найдите квадрат этого расстояния.

Задачу решили: 67
всего попыток: 213
Задача опубликована: 04.07.12 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Все стороны прямоугольного параллелепипеда - целые числа (в см.), а его объём - больше 2000 куб. см. Найдите наименьшую возможную площадь его поверхности в кв. см.

Задачу решили: 35
всего попыток: 79
Задача опубликована: 07.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: zmerch

В треугольнике ABC

\angle ABC < 90^\circ, \quad AB = 15, \quad BC = 27. 

Через середину M стороны AC провели прямую l перпендикулярно прямой BC. Прямая l пересекает окружность с центром в точке A и проходящую через точку M в точке P(\ne M). Рассмотрим окружность, проходящую через точки B и M, центр O которой лежит с точкой A по разные стороны от прямой BC и находится на расстоянии 3 от BC.

Обозначим пересечение этой окружности с прямой l за Q. Найдите площадь треугольника OPM, если PQ = 30.

Задачу решили: 26
всего попыток: 91
Задача опубликована: 24.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: Vkorsukov

Описанная окружность O треугольника ABC касается окружности O' в точке A. Пусть прямая AB пересекает окружность O' в точке D(\ne A); прямая BC пересекает окружность O' в точке E, лежащей с точкой C по разные стороны от прямой AD, и точке F. Касательная к окружности O в точке B пересекает отрезок DF в точке K, прямая CD пересекает окружность O' в точке L(\ne D). Найдите величину (в градусах) \angle CAB, если \angle CFA = 38^\circ, \angle DKB = 47^\circ, \angle CLA = 60^\circ.

Задачу решили: 51
всего попыток: 123
Задача опубликована: 10.01.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

В трехмерном кубе 8х8х8 играют в крестики-нолики. Сколько существует прямых, на которых могут лежать 8 крестиков в ряд?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.