img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: fortpost решил задачу "Синусы и косинусы" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 371
всего попыток: 1322
Задача опубликована: 12.03.09 12:58
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: IrineK (Ирина Каминкова)

При каком n в классе из n учеников вероятность наличия двух учеников, которые празднуют свои дни рождения в один и тот же день, наиболее близка к 1/2?

Задачу решили: 192
всего попыток: 926
Задача опубликована: 13.05.09 09:32
Прислал: demiurgos img
Источник: Г.Гамов, М.Стерн "Занимательные задачи"
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: casper

В шляпе лежат 5 карточек: у одной обе стороны красные, у другой обе стороны чёрные, а у каждой из трёх остальных одна сторона красная, а другая чёрная. Все стороны всех карточек можно отличить друг от друга только по цвету. Закрываем глаза, наудачу вытаскиваем одну карточку и кладём её на стол. Открываем глаза и видим, что её верхняя сторона — красная. Сколько процентов составляет вероятность, что её нижняя сторона  — тоже красная?

Задачу решили: 263
всего попыток: 463
Задача опубликована: 20.05.09 22:17
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: God_Gefest (Илья Закирзянов)

Вы — участник всем известной телевизионной игры, и Вам нужно выбрать одну из трёх шкатулок, в одной из которых находится Приз. Вы выбираете одну из шкатулок, например, №1, после чего всем известный ведущий, который знает, где Приз, открывает одну из оставшихся шкатулок, например, №3, где Приза (естественно) нет. После этого он спрашивает Вас, не желаете ли Вы изменить свой выбор и вместо шкатулки №1 выбрать шкатулку номер №2. Какова максимальная вероятность выбрать шкатулку с Призом при таких условиях игры? (Ответ представьте в виде несократимой дроби вида p/q, где p и q — натуральные числа.)

Задачу решили: 129
всего попыток: 372
Задача опубликована: 25.05.09 22:46
Прислал: demiurgos img
Источник: Г.Гамов, М.Стерн "Занимательные задачи"
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: NNN

Перед Вами две урны, в которых лежат 20 белых и 20 чёрных шаров, но сколько и каких шаров лежат в каждой урне — неизвестно. Вы наудачу выбираете урну, а затем извлекаете из неё шар. Зависит ли вероятность извлечь белый шар от того, как первоначально разложены шары в урнах? В ответе введите максимальное значение этой вероятности в виде несократимой дроби p/q, где p и q — натуральные числа.

Задачу решили: 89
всего попыток: 312
Задача опубликована: 14.04.10 08:00
Прислала: IrineK img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: nellyk

Кот Матроскин и пёс Шарик договорились встретиться возле большого дуба в течение 25 минут, чтобы вместе отправиться за кладом. Было условлено, что каждый будет ждать ровно 10 минут — ведь очень хочется выкопать сокровища поскорее. Сколько процентов составляет вероятность того, что друзья откопают клад вдвоем, при условии, что все моменты появления каждого из них в течение оговоренных 25 минут равновероятны. (Точнее, моменты их появления — независимые равномерно распределённые случайные величины.)

Задачу решили: 75
всего попыток: 318
Задача опубликована: 12.05.10 08:00
Прислала: IrineK img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Три студента живут в одной комнате в общежитии. К концу месяца они испытывают серьезные финансовые затруднения и решают  «сброситься», чтобы на собранную сумму купить необходимые продукты. Нужно собрать 1000 рублей. Каждый заявляет, что уж 500 рублей у него есть. Но, скорее всего, они преувеличивают: реальное количество денег у каждого из них может с равной вероятностью и независимо от других оказаться любой суммой от сушеного комара в кошельке до заявленного максимума в 500 рублей. Сколько процентов составляет вероятность продовольственного кризиса для бедняг-студентов в данных обстоятельствах? (Ответ округлите до ближайшего целого числа.)

Задачу решили: 93
всего попыток: 127
Задача опубликована: 01.08.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Саша бросил монету 21 раз, а Володя — только 20. Найдите вероятность того, что у Саши выпало больше орлов, чем у Володи.

Задачу решили: 36
всего попыток: 294
Задача опубликована: 10.08.11 08:00
Прислал: Vkorsukov img
Источник: Задача 607
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

В шахматной композиции (задачах) есть раздел  сказочных шахмат. В этих задачах изменены или дополнены некоторые шахматные правила (фигуры, форма шахматной доски и т.п.). Рассмотрим сказочные шахматы, в которых короли могут находиться под боем (шахом), а значит возможно и взятие королей. Остальные шахматные правила оставляем в силе. Целью такой игры может быть, например, взятие всех неприятельских фигур (как в шашках). Среди всех возможных позиций,  полученных из начальной шахматной позиции играя по этим правилам, присутствуют и позиции только с двумя фигурами — белым королём и чёрным слоном, в которых белые начинают и выигрывают в один ход. Вычислите вероятность возникновения такой позиции при случайной расстановке белого короля и чёрного слона на пустую шахматную доску.

Задачу решили: 79
всего попыток: 102
Задача опубликована: 31.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: GennadyKorotke...

Лектор роняет указку, она падает с кафедры и ломается на три куска. Найдите вероятность того, что из обломков можно сложить треугольник. (Считать, что места разломов — независимые случайные величины, равномерно распределённые по длине целой указки.)

Задачу решили: 36
всего попыток: 70
Задача опубликована: 22.02.13 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
баллы: 100

Если в мешке находится по 3 шара черного, белого и красного цвета, как известно, вероятность вытащить два шара, например, красного цвета в этом случае равна Pк=3/9 ·2/8=1/12, а вероятность выташить наугад два шара любого одинакового цвета P=1/4.

В нашем мешке находится некоторое количество x=n·m шаров: n различных цветов, а шаров каждого цвета ровно m штук. Нетрудно посчитать вероятность P1 выташить два шара любого одинакового цвета для этого случая. Когда в мешок добавили 52 шара нового цвета, которого в мешке не было оказалось, что вероятность P2 (для нового количества шаров и цветов) вытащить два шара одинакового цвета не изменилась, и осталось той же, что была до добавления шаров нового цвета. То есть P1=P2

Сколько всего x шаров могло находиться в таком мешке? (до добавления 52 шаров). Если вариантов xi несколько, в ответе укажите сумму всех вариантов. Необходимо учитывать разумные ограничения, что m>1 и n>1.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.