Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
1186
всего попыток:
7696
Сколько оборотов в сутки делает прямая, содержащая биссектрису угла между часовой и минутной стрелками? (Если угол нулевой, то эта прямая проходит по стрелкам, если развёрнутый — то перпендикулярна им.)
Задачу решили:
2794
всего попыток:
5105
Коля и Вася живут в одном доме, на каждой лестничной клетке которого 4 квартиры. Коля живет на пятом этаже, в квартире 83, а Вася — на третьем этаже в квартире 169. Сколько этажей в доме?
Задачу решили:
1974
всего попыток:
3279
Собака — 3,
Задачу решили:
665
всего попыток:
2181
Играют двое, один из них загадывает 5 натуральных двузначных чисел x1, x2, x3, x4, x5. Второму разрешается спрашивать, чему равна сумма a1·x1+a2·x2+a3·x3+a4·x4+a5·x5, где a1, a2, a3, a4, a5 — любые целые числа. Какое наименьшее число вопросов потребуется отгадывающему, чтобы узнать задуманные числа?
Задачу решили:
582
всего попыток:
653
Найти разность (1+2+3+...+n)2 − (13+23+33+...+n3) при n=200910.
Задачу решили:
655
всего попыток:
2445
В общежитии 30 жилых комнат. Из года в год первого апреля жители этих комнат повторяют один и тот же розыгрыш. Они просыпаются по очереди и, если дверь их собственной комнаты на месте, то они снимают дверь какой-нибудь другой из этих комнат и уносят её в подвал. Если же дверь их комнаты унесена, то они забирают из подвала любую дверь и вешают её на место своей. (Если ни одно из этих действий невозможно, то они не делают ничего). Какое наибольшее количество дверей может оказаться в подвале после того, как все проснутся?
Задачу решили:
846
всего попыток:
1697
Васин счёт в банке составляет 2009 рублей. Банкоматы этого банка могут совершать операции только двух видов: снимать 700 рублей или класть 910 рублей. Какую максимальную сумму Вася может снять со счета, если других денег у него нет?
Задачу решили:
319
всего попыток:
728
На 50 деревянных правильных пятиугольников, прибитых к полу, натягивается резиновое кольцо, которое принимает форму некоторого многоугольника. Каково минимальное число его вершин?
(Условие задачи изменено, поскольку прежняя формулировка вызывала много вопросов. )
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|