Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
96
всего попыток:
418
За круглым столом сидят 30 человек. Некоторые из них всегда говорят правду, а остальные всегда лгут. У каждого спросили: «Есть ли среди ваших соседей лжец?», и каждый ответил: «Да». Сколько лжецов могло быть за столом? В ответе напишите сумму всех возможных значений количества лжецов.
Задачу решили:
98
всего попыток:
155
Взяли 100 чисел. Среди их всевозможных произведений по два числа оказались ровно 1000 отрицательных. Сколько среди исходных чисел было нулей? В ответе укажите произведение всех возможных значений количества нулей.
Задачу решили:
65
всего попыток:
136
Сколькими способами можно расставить 38 попугаев в шеренгу так, чтобы каждый попугай стоял либо на своём месте, либо на соседнем (например, десятый попугай может стоять либо на десятом, либо на девятом, либо на одиннадцатом месте)?
Задачу решили:
64
всего попыток:
182
Каждую клетку прямоугольника 6×8 раскрасили в один из 12 различных цветов. Пара цветов называется плохой, если найдутся две клетки, имеющие общую сторону и закрашенные этими цветами. Найдите наименьшее число плохих пар.
Задачу решили:
26
всего попыток:
31
Сколькими способами можно записать все различные целые числа от 1 до n в одну строку так, чтобы выполнялось следующее условие: где-то после любого числа k, написанного не на последнем месте, должно встретиться хотя бы одно из чисел k−1 и k+1?
Задачу решили:
19
всего попыток:
81
В оранжерее на космической станции в виде прямоугольника 713×137 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Трижды хлопала дверь, и всякий раз каждая из 713×137 бабочек перелетала по диагонали на соседний цветок. После каждого хлопка на некоторых цветах оказывалось по несколько бабочек, а на некоторых — ни одной, и при этом каждая бабочка, в очередной раз перелетая, не возвращалась на свой прежний цветок. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки после трёх хлопков.
Задачу решили:
44
всего попыток:
92
На клетчатой бумаге отмечены точки A и B. Примем длину стороны клетки за 1. Посчитайте количество маршрутов идущих из A в B по сторонам клеток и имеющих длину 11. (Маршрут может менять направление только в углах клеток. Допускаются маршруты, проходящие несколько раз через одну вершину (включая A и B) или сторону клетки.)
Задачу решили:
45
всего попыток:
111
Множество Q(n) состоит из слов длины 2n, в записи которых ровно n букв A и n букв B, обладающих следующим свойством: для каждого k ≤ 2n среди первых k букв количество букв B не меньше, чем букв A. Найдите мощность Q(8).
Задачу решили:
36
всего попыток:
156
На ипподроме происходит заезд восьми лошадей. Как много вариантов финишировать имеется, учитывая, что некоторые лошади могут придти к финишу одновременно (голова в голову)? (Две лошади могут финишировать тремя способами: А выигрывает, В выигрывает, А и B приходят одновременно).
Задачу решили:
11
всего попыток:
78
Возьмём полоску бумаги и начнём её разрезать и сгибать пополам. Обозначим
Последовательность сгибов/разрезов назовём "фальцовкой". Определите на каком месте находится число 2012 в раскладке для следующей фальцовки: '2010201120122013'
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|