Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
34
всего попыток:
60
Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?
Задачу решили:
23
всего попыток:
34
На какое минимальное число частей можно разрезать прямыми линиями любой треугольник, так что из них можно сложить равнобедренный треугольник той же площади.
Задачу решили:
37
всего попыток:
65
На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно 1 знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, . . . , 99 знакомых среди оставшихся к моменту их ухода. Какое наибольшее число людей могло остаться в конце?
Задачу решили:
23
всего попыток:
28
Какое минимальное количество клеток можно закрасить черным в белом квадрате 300x300, чтобы никакие три черные клетки не образовывали уголок, а после закрашивания любой белой клетки это условие нарушалось?
Задачу решили:
58
всего попыток:
63
Пятиугольник ABCDE делится отрезком BD на ромб ABDE и равносторонний треугольник BCD. Чему равен угол ACE (в градусах)?
Задачу решили:
41
всего попыток:
116
Матрицу 10x10 заполнили целыми числами от 1 до 100 так, что сумма любых двух чисел на соседних клетках не превосходит некоторого целого числа M. Найдите минимально возможное M.
Задачу решили:
22
всего попыток:
28
В чемпионате по шахматам участвовало 16 игроков. После его окончания каждому участнику выдали отчет на 16 страницах. На первой указано имя участника, на второй - он и те, у кого он выиграл, на третьей - все люди из второго списка и те, у кого они выиграли, и т.д. на последней, 16-й, все участники со страницы 15 и те, у кого они выиграли. Известно, что для любого участника на его последнюю страницу попал человек, которого не было в его одиннадцатом списке. Какое максимальное количество партий чемпионата могло быть сыграно вничью?
Задачу решили:
34
всего попыток:
72
Ювелир сделал незамкнутую цепочку из 120 пронумерованных звеньев. Капризная заказчица потребовала изменить порядок звеньев в цепочке. Из вредности она заказала такую незамкнутую цепочку, чтобы ювелиру пришлось раскрыть как можно больше звеньев. Сколько звеньев придется раскрыть?
Задачу решили:
32
всего попыток:
33
В каждую клетку квадратной таблицы размера (22016−1)×(22016−1) ставится одно из чисел +1 или −1. Расстановку чисел назовем удачной, если каждое число равно произведению всех соседних с ним (соседними считаются числа, стоящие в клетках с общей стороной). Найдите число удачных расстановок.
Задачу решили:
24
всего попыток:
27
На каждой стороне 10-угольника (не обязательно выпуклого) как на диаметре построили окружность. Может ли оказаться, что все эти окружности имеют общую точку, не совпадающую ни с одной вершиной 10-угольника?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|