img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 53
всего попыток: 64
Задача опубликована: 06.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: andervish (Андрей Вишневый)

Пусть f(n) функция, которая возвращает ближайшее целое к n1/4.
Найдите 1/f(1)+1/f(2)+1/f(3)+...+1/f(1995).

Задачу решили: 41
всего попыток: 132
Задача опубликована: 16.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найти наименьшее положительное натуральное число, которое не может быть выражено в виде суммы:
1/f(1)+1/f(2)+...+1/f(N), где f(n) - ближайшее целое число к n1/6

Задачу решили: 30
всего попыток: 179
Задача опубликована: 24.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Известно, что cos(720°/7) является одним из корней уравнения

ax6-bx4+cx2-x-1=0, где a, b, c - натуральные числа. Найдите a+b+c.

Задачу решили: 36
всего попыток: 62
Задача опубликована: 27.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Zoxan

Пусть a, b, c, d, e - действительные числа такие, что:

c+a=15

ac+b+d=85

ad+bc+e=225

ae+bd=274

be=120

Найдите сумму всех возможных значений e.

Задачу решили: 8
всего попыток: 185
Задача опубликована: 19.07.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

При некоторых положениях трёх стрелок часов (будем считать, что все стрелки двигаются плавно), одна из стрелок делит попалам угол между двумя другими стрелками. Сколько существует таких положений?

[Угол α между двумя другими стрелками будем считать только: 0°<α<180°, и стрелка-биссектриса делит его на два одинаковых угла 0°<α/2<90°]

Пример искомого положения можно наблюдать ровно в 1:12:00.

Задачу решили: 49
всего попыток: 67
Задача опубликована: 07.09.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Пусть a1=1, an+1=an+[an/n]+2 для натуральных n>1, где [x] - целая часть числа x. Найти a1997.

Задачу решили: 28
всего попыток: 41
Задача опубликована: 25.11.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Определите сумму всех действительных значений параметра a, при которых для любого натурального n выполняется тождество
4[an]=n+[a[an]], где [x] - целая часть числа x. Ответ укажите с точностью до трех знаков после запятой.

Задачу решили: 33
всего попыток: 68
Задача опубликована: 15.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Найти максимальное натуральное число n ≤ 100 для которого найдутся такие положительные рациональные, но не целые числа a и b, что оба числа a + b и an + bn — целые.

Задачу решили: 32
всего попыток: 54
Задача опубликована: 18.08.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найти максимальное натуральное число N такое, что для некоторого натурального n и нечетного простого p верно:

p3n+1+pn+1=Np.

Задачу решили: 53
всего попыток: 87
Задача опубликована: 30.10.17 08:00
Прислал: solomon img
Источник: Санкт-Петербургская олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

При каких значениях а и b многочлен x4+ax3+bx2-8x+1 является полным квадратом. В ответе указать сумму всех возможных значений b.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.