Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
128
всего попыток:
297
Рассматриваются все натуральные числа n от 1 до 2010 включительно. Для скольких из них число nn является квадратом целого числа?
Задачу решили:
85
всего попыток:
191
Синоптик Сеня Невезучий утверждает, что на протяжении одного года шесть раз первый вторник месяца был солнечным, а первый вторник после первого понедельника того же месяца — пасмурным. Какое наибольшее число раз такое действительно могло случиться в течение одного года?
Задачу решили:
121
всего попыток:
261
На доске в строку выписаны 105 единиц. У каждой третьей из них изменили знак, затем у каждого пятого из полученных чисел также изменили знак, после этого знак изменили у каждого седьмого числа. Чему равна сумма полученных чисел?
Задачу решили:
113
всего попыток:
290
Девочка подошла к переходу через улицу в тот момент, когда загорелся жёлтый свет, и загляделась на работу светофора. По своим часам она заметила, что красный свет горит в полтора раза меньше времени, чем зелёный, а жёлтый — в четыре раза меньше, чем красный. После того, как в восемнадцатый раз горел жёлтый свет, зажёгся зелёный, и девочка, простояв 17 минут, стала переходить улицу. Сколько секунд горит жёлтый свет?
Задачу решили:
60
всего попыток:
97
Конь может сделать N ходов (N≥2) и вернуться в исходную клетку, побывав при этом на всех горизонталях и вертикалях шахматной доски N×N. Найдите сумму всех возможных значений N.
Задачу решили:
63
всего попыток:
143
Найдите максимально возможное число членов последовательности, состоящей из таких ненулевых целых чисел, что сумма любых семи из них, идущих подряд, — положительна, а любых одиннадцати, идущих подряд, – отрицательна.
Задачу решили:
136
всего попыток:
185
Семь шахматистов сыграли турнир в один круг. (За победу начислялось 1 очко, за ничью — 1/2, за поражение — 0.) Победитель набрал в два раза больше очков, чем в сумме шахматисты, занявшие три последних места. Петя занял 4-е место, набрав три очка. Как он сыграл с занявшим 3-е место (1 — выиграл, 0 — проиграл, 1/2 — сыграл вничью)?
Задачу решили:
93
всего попыток:
262
Мне надоели обычные игральные кубики, и я решила сделать свой. От обычного кубика мой отличается только тем, что на любых двух соседних гранях количество точек различается как минимум на 2. Какое наименьшее число точек мне понадобится? (Не забудьте о том, что на различных гранях должно быть различное количество точек, и не менее одной точки на каждой грани!)
Задачу решили:
134
всего попыток:
178
В конкурсе пения участвовали Петух, Ворона и Кукушка. Каждый член жюри проголосовал за одного из трёх исполнителей. Дятел подсчитал, что в жюри было 59 судей, причём за Петуха и Ворону было в сумме подано 15 голосов, за Ворону и Кукушку - 18 голосов, за Кукушку и Петуха - 20 голосов. Дятел считает плохо, но каждое из четырёх названных им чисел отличается от правильного не более чем на 13. Сколько судей проголосовали за Ворону?
Задачу решили:
93
всего попыток:
215
По кругу выписаны числа 1,2,3,...,10 в некотором порядке. Петя вычислил 10 сумм всех троек соседних чисел и написал на доске наименьшую из них. Какое наибольшее число могло появиться на доске?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|