Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
8
всего попыток:
10
Рассмотрим всевозможные замкнутые цепочки правильных n-угольников одинакового размера, центры которых лежат на одной окружности (образуя некоторый правильный многоугольник), и каждые два последовательных многоугольника имеют одну общую сторону. Например, при n=8 существуют ДВЕ такие цепочки. Однако, коллега aaa_uz выдвинул интересную идею о расширении определения таких замкнутых цепочек, используя дополнительные "витки обхода": в случае не замыкания цепочки одним витком обхода, продолжать добавлять новые n-угольники (залезая на старые), пока цепочка не замкнётся: последний n-угольник будет иметь общую сторону с первым. В случае нескольких витков обхода центры n-угольников образуют самопересекающуюся замкнутую ломаную ("звезду"), совершая определённое количество витков обхода вокруг центра цепочки. При n=8 существует ровно ОДНА такая цепочка. Она использует ТРИ витка обхода. Всего существует ТРИ цепочки 8-угольников в расширенном определении: Обозначим f(n) суммарное количество витков обхода всех цепочек n-угольников. Таким образом, f(8) = 1+1+3 = 5. Найдите f(10403).
Задачу решили:
22
всего попыток:
28
Однажды в колхозе некий работник договорился о зарплате за 12 месяцев работы с 1-го Апреля: 800 рублей плюс Кляча, которая стоила всегда в целых рублях, но не более 50-ти! По причине форс-мажора, работник был вынужден уволиться после 7 месяцев работы, и ему заплатили: 490 рублей + Кляча. Всё честно! Сколько рублей стоила Кляча на момент договорённости?
Задачу решили:
26
всего попыток:
30
В выражении разные буквы соответствуют разным цифрам, найдите его значение. (С+Н+Е+Г+У+Р+О+Ч+К+А)*(С+Н+Е+Г+У+Р+О+Ч+К+А) - (СНЕГ)/(СНЕГ)=?
Задачу решили:
8
всего попыток:
26
На рисунке изображены две равные фигуры: слева желтая фигура, сложенная из 18 желтых U-пентамино, справа – зеленая фигура, сложенная из 30 зеленых I-тримино, употребив таким образом 18+30=48 фигурок. Сложите две равные фигуры, одну желтую, другую зеленую, употребив суммарно наименьшее количество желтых U-пентамино и зеленых I-тримино.
Задачу решили:
11
всего попыток:
53
На рисунке слева изображены три несимметричных пентамино, справа приведена фигура, сложенная из этих пентамино и имеющая ось симметрии. Сколько различных фигур, имеющих ось симметрии, можно сложить из этих трех пентамино?
Задачу решили:
10
всего попыток:
15
Площадь выпуклого восьмиугольника с углами 135 градусов и вершинами в узлах сетки равна 12,5 единичных квадратов (см. рисунок). Сколько аналогичных восьмиугольников площадью 16 единичных квадратов можно разместить на сетке?
Задачу решили:
18
всего попыток:
18
Отец задал уравнение вундеркинду Васе для решения в натуральных числах x3y-xy3=2023. Вася, решив устно эадачу, назвал количество пар решений (x, y). Требуется в подробном решении выяснить, как решил задачу Вася?
Задачу решили:
16
всего попыток:
21
На плоскости через точку А проведено 29 прямых, через точку B проведено 34 прямых. Каждая прямая первого пучка пересекают каждую прямую второго пучка, и наоборот. Прямых, принадлежащих обоим пучкам, нет. На сколько частей делят плоскость все эти прямые? Например, на рисунке две прямые пучка А и три прямые пучка B делят плоскость на 15 частей.
Задачу решили:
19
всего попыток:
30
Для каждого натурального N>1 определены: Найдите максимальное N, меньшее 12345, для которого g(N) нецело.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|