img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 25
всего попыток: 42
Задача опубликована: 19.12.22 00:08
Прислал: admin img
Вес: 2
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: solomon

Известно, что 
3\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{a}+\sqrt[3]{b}-\sqrt[3]{c}, где a, b, c - натуральные числа. Найти a+b+c.

Задачу решили: 31
всего попыток: 39
Задача опубликована: 27.01.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 - под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин, одновременно над водой яблоко начинает есть птичка со скоростью 45 г/мин. Какая часть яблока достанется рыбке?

Задачу решили: 19
всего попыток: 25
Задача опубликована: 03.02.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Рассмотрим бесконечную клетчатую плоскость, в каждую клетку которой вписано число натурального ряда, – по порядку, начиная с 1, следуя по спирали (см. рис.). Спираль для определенности будем считать закручивающейся по часовой стрелке.

Круги на спирали

Введем прямоугольную систему координат с началом в центре клетки с числом 1 и осями, параллельными сторонам клеток. Нарисуем в ней четыре параболы y=x3, y=–x3, x=y3 и x=–y3. Рассмотрим на параболах точки с целыми координатами. Каждая такая точка определяет клетку плоскости, а значит, и написанное в ней число. Например, точке параболы (0; 0) соответствует число 1, точке (1; 1) — число 9, а точке (2; 8) — число 283. Все такие числа выделены зеленым цветом. Сгруппируем выделенные числа так, чтобы все они (кроме центральной единицы) лежали на концентрических окружностях. На рисунке приведены первые две окружности.  Найдите среднее арифметическое чисел, расположенных на 10-ой окружности и укажите его в ответе.

Задачу решили: 12
всего попыток: 16
Задача опубликована: 24.02.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Гипотрохоида — плоская кривая, образуемая фиксированной точкой, находящейся на фиксированной радиальной прямой окружности, катящейся по внутренней стороне неподвижной окружности. Гипотрохоида задается тремя параметрами: R — радиус неподвижной окружности, r — радиус вращающейся окружности, d — расстояние от фиксированной точки до центра вращающейся окружности. На рисунке приведена гипотрохоида с параметрами R=11, r=7, d=11, которая делит плоскость на 35 частей.

Деление плоскости на части

На сколько частей разделит плоскость гипотрохоида с параметрами R = p101, r = p100, d = p101, где p100 и p101 — простые числа с номерами 100 и 101?

Задачу решили: 12
всего попыток: 14
Задача опубликована: 03.03.23 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Квадрат разделён отрезками на четыре треугольника целочисленной площади. Площади трёх из них образуют арифметическую прогрессию с разностью 1.

Квадрат и четыре треугольника

Сколько существует таких квадратов с целочисленной стороной?

Задачу решили: 9
всего попыток: 12
Задача опубликована: 08.03.23 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: user033 (Олег Сopoкин)

Квадрат разделён отрезками на четыре треугольника целочисленной площади. Площади a, b, c трёх из них образуют арифметическую прогрессию с разностью 1.

Квадрат и четыре треугольника - 2

Найти наибольшую площадь d внутреннего треугольника такую, что d – точный квадрат.

Задачу решили: 14
всего попыток: 21
Задача опубликована: 17.03.23 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Lec

Квадрат разделён отрезками на четыре треугольника целочисленной площади.

Квадрат и четыре треугольника - 3

Площади трех  цветных треугольников, кроме белого, – соседние члены арифметической прогрессии с разностью 1.  Сколько существует таких квадратов  с целочисленной стороной?  

Задачу решили: 19
всего попыток: 39
Задача опубликована: 19.04.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Сколько действительных корней имеет уравнение 100 cos=√x?

Задачу решили: 22
всего попыток: 32
Задача опубликована: 05.06.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg

В кондитерском цеху мастер приготавливает за один час целое количество тортов более 18, а ученик на 10 тортов меньше. Мастер за целое количество времени в часах выполнил заказ на приготовление определенного количества тортов, когда трое его учеников на два часа меньше тратят на исполнение заказа. Сколько тортов приготовит мастер за восьмичасовую смену при условии исполнения полных заказов?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.