img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 82
всего попыток: 86
Задача опубликована: 04.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Известно, что f(f(x))=1-x. Найти f(1/2).

Задачу решили: 30
всего попыток: 92
Задача опубликована: 11.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zhekas (Евгений Сыромолотов)

Пусть a, b и c - корни кубического уравнения x3+3x2+5x+7=0. Для кубического многочлена p(x) известно, что p(a)=b+c, p(b)=c+a, p(a+b+c)=-16. Найти p(0).

Задачу решили: 49
всего попыток: 80
Задача опубликована: 13.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найти максимум m=xy2z2/(x5+y5+z5) для всех положительных чисел x, y, z. В ответе введите значение (5m)5.

Задачу решили: 53
всего попыток: 65
Задача опубликована: 18.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Пусть x, y, z ≥ 0 и x+y+z=1. Найдите максимум x(x+y)2(y+z)3(z+x)4.

Задачу решили: 98
всего попыток: 115
Задача опубликована: 23.03.15 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg

При каком минимальном натуральном n выполняется неравенство\sqrt {n} - \sqrt {n - 1} < 0.01 

Задачу решили: 55
всего попыток: 99
Задача опубликована: 27.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Рассмотрим возрастающую последовательность целых положительных чисел, квадрат которых заканчивается на 889.

Найти 889-е такое число.

Задачу решили: 41
всего попыток: 63
Задача опубликована: 17.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: kvanted

Пусть A - матрица 16x16 с элементами aij=НОД(i,j) для 1≤i,j≤16. Найдите ее определитель.

Задачу решили: 40
всего попыток: 54
Задача опубликована: 29.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Пусть Q(x)=x3+6. Определим последовательность полиномов Pn(x):

P1(x)=Q(x), Pn+1(x)=Q(Pn(x)), n=1,2,...

Найти сумму всех действительных решений уравнения P2014(x)=x.

Задачу решили: 42
всего попыток: 172
Задача опубликована: 01.05.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Пусть P(x) и Q(x) - кубические полиномы с коэффициэнтами при старшей степени равными 1 и a - действительное число.

P(x) имеет только два действительных корня a+1 и a+7.

Q(x) имеет только два действительных корня a+3 и a+9.

Известно, что P(x)-Q(x)=a для всех x. Найти a.

Задачу решили: 55
всего попыток: 73
Задача опубликована: 13.05.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Известно, что a1+a2+...an=27, все ai - положительные действительные числа. Найти максимум a1*a2*...*an. Ответ округлите до ближайшего целого.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.