img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: user033 решил задачу "Объездная дорога" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 39
всего попыток: 63
Задача опубликована: 15.05.20 08:00
Прислал: admin img
Источник: Польская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите сумму всех произведений xy целых решений уравнения x3-y3=91. 

Задачу решили: 20
всего попыток: 72
Задача опубликована: 18.05.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите в порядке возрастания 2020-е число среди всех натуральных чисел, сумма цифр которых равна 2020.

Задачу решили: 32
всего попыток: 40
Задача опубликована: 20.05.20 08:00
Прислал: admin img
Источник: Польская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В записи 30?0?03 вопросительные знаки заменили на цифры и получили число, которое стало делиться на 13 нацело. Найдите сумму всех чисел, которые могли получиться. 

Задачу решили: 29
всего попыток: 49
Задача опубликована: 22.05.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Sam777e

На листках отрывного календаря на год написаны числа, соответствующие датам каждого месяца. Какое наименьшее количество листков нужно оторвать так, чтобы на оставшихся листках не нашлось двух чисел, одно их которых в два раза больше другого?

Уточнение: листки календаря можно вырывать в любом порядке.

Задачу решили: 33
всего попыток: 35
Задача опубликована: 25.05.20 08:00
Прислал: admin img
Источник: Польская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

В треугольнике углы A, B и C такие, что cos3A+cos3B+cos3C=1. Найти наибольший угол треугольника в градусах.

Задачу решили: 25
всего попыток: 77
Задача опубликована: 27.05.20 08:00
Прислал: avilow img
Источник: Книга "Математика, ЕГЭ-2012" (Легион)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

Одна из вершин куба симметрично отражена относительно центра каждой его грани. Полученные таким образом шесть точек являются вершинами выпуклого многогранника. Найдите его объём, если объём куба равен 36.

Задачу решили: 31
всего попыток: 36
Задача опубликована: 29.05.20 08:00
Прислал: vochfid img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Рассматриваются площади всех выпуклых четырёхугольников ABCD, со сторонами |AB|=13, |BC|=77, |CD|=84 и |АD|=36. Найдите значение наибольшей площади.

Задачу решили: 23
всего попыток: 61
Задача опубликована: 01.06.20 08:00
Прислал: Sam777e img
Источник: Индийская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Пусть S - множество всех рациональных чисел r вида r = 0,(abcdefgh), то есть чистых десятичных периодических дробей, имеющих минимальный период длиной 8. Найти сумму всех элементов S.

Чистой периодической дробью (ЧПД) называется дробь, в которой период начинается с первого знака после запятой, например, 6/11  - ЧПД, а 7/12 - нет.

Задачу решили: 16
всего попыток: 16
Задача опубликована: 05.06.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Сложите из 100 экземпляров фигурок

1 фигурка

в 10 раз большую фигуру

100 фигурок

Фигурки можно поворачивать и переворачивать.

Задачу решили: 19
всего попыток: 20
Задача опубликована: 10.06.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

Докажите, что для любого натурального числа существует такое его кратное, в десятичной записи которого используется не более двух различных цифр.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.