img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 33
всего попыток: 99
Задача опубликована: 26.05.14 09:53
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Окружность S и лежащая на ней точка P(a,b) обладают следующими свойствами:

(i) Касательная в точке P проходит через начало координат.
(ii) Центр окружности S лежит в четвертой четверти.
(iii) S проходит через точки (1,0) и (9,0).
(iv) b ≥ 9/5.

Для точки P(a,b) обозначим за M и m максимум и минимум выражения

10_formula_Page_3.png

Найдите 36M + 27m2.

Задачу решили: 47
всего попыток: 136
Задача опубликована: 16.06.14 08:00
Прислал: Zoxan img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Дана арифметическая прогрессия 1, 18, 35, ... Из неё выделили монотонную последовательность {an}, все члены который можно записать с помощью одних троек. Найдите сумму цифр числа a10.

Задачу решили: 23
всего попыток: 57
Задача опубликована: 05.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Пусть n - положительное действительное число, такое что уравнение nx2=n[x2]+x имеет 2014 действительных решений ([x] - целая часть x). Множество всех таких n находятся в минимально возможном полуинтервале (a, b].
Найдите [1000*(b-a)].

Задачу решили: 37
всего попыток: 61
Задача опубликована: 29.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Пусть a, b, c, d - неравные нулю действительные числа такие, что функция f(x)=(ax+b)/(cx+d) определена на R\{-d/c} и обладает свойствами:

1) f(19)=19

2) f(97)=97

3) f(f(x))=x

Предположим, что имеется единственное число α такое, что α≠f(x) для всех действительных x. Найдите α.

Задачу решили: 53
всего попыток: 71
Задача опубликована: 06.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Найти сумму всех натуральных n таких, что n2(2n-n3)+1 является целой степенью 7.

Задачу решили: 42
всего попыток: 58
Задача опубликована: 13.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Найти количество функций удовлетворяющих следующему условию: f(x2+yf(z))=xf(x)+zf(y) для всех действительных x, y и z.

Задачу решили: 47
всего попыток: 55
Задача опубликована: 14.11.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Найдите наибольшее целое число n < 1000 такое, что существуют 2 неотрицательных целых числа, удовлетворяющих свойству:

n = (a2+b2)/(ab-1).

Задачу решили: 49
всего попыток: 72
Задача опубликована: 19.11.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите количество действительных решений уравнения:
x=1/(x-1)+2/(x-2)+...+100/(x-100).

Задачу решили: 23
всего попыток: 97
Задача опубликована: 15.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

a1+a2+a3+a4+a5=1
a12+a22+a32+a42+a52=1
a13+a23+a33+a43+a53=2
a14+a24+a34+a44+a54=3
a15+a25+a35+a45+a55=5
Найти a16+a26+a36+a46+a56.

Задачу решили: 58
всего попыток: 73
Задача опубликована: 24.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: MMM (MMM MMM)

Пусть x и y ненулевые действительные числа такие, что x2+y2=x2y2. Найти максимум (5x+12y+7xy)/(xy).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.