Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
42
всего попыток:
50
В коммерческом турнире по футболу участвовало пять команд. Каждая должна была сыграть с каждой ровно один матч. В связи с финансовыми трудностями организаторы некоторые игры отменили. В итоге оказалось, что все команды набрали различное число очков и ни одна команда в графе набранных очков не имеет нуля. Какое наименьшее числом игр могло быть сыграно в турнире, если за победу начислялось три очка, за ничью — одно, за поражение — ноль?
Задачу решили:
39
всего попыток:
56
Число 2100010006 обладает таким свойством: первая цифра равна количеству единиц в числе, вторая - двоек, и так далее, последняя - нулей. Найдите максимальное девятизначное число с "обратным" свойством, т.е. такое, в котором первая цифра соотвествует количеству "не единиц", вторая - "не двоек" и т.д., последняя - "не девяток".
Задачу решили:
38
всего попыток:
42
Имеется три стопки монет. За один ход можно из одной стопки переложить одну монету в другую. За ход Вовочка зарабатывает количество монет, равное разнице числа монет в стопке, из которой берется монета и числа монет в которую перекладывается. Если разница отрицательная, то у Вовочки забирается соответствующая сумма, если не хватает, то можно делать ходы в долг. В какой-то момент после перекладывания, все монетки оказались в первоначальных стопках. Какое максимальное количество монет мог заработать Вовочка?
Задачу решили:
36
всего попыток:
65
Внутри некоторого выпуклого 13-угольника нет ни одной точки, через которой проходят 3 (или больше) его диагоналей. Сколько всего точек пересечения диагоналей есть внутри этого многоугольника?
Задачу решили:
31
всего попыток:
50
Гидры состоят из голов и шей (любая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы A гидры. Но при этом из головы A мгновенно вырастает по одной шее во все головы, с которыми A не была соединена. Геракл побеждает гидру, если ему удастся разрубить ее на две несвязанные шеями части. Найдите наименьшее N, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более, чем N ударов.
Задачу решили:
24
всего попыток:
34
Имеются 4 внешне неотличимые монеты весом 1, 2, 3 и 4 грамма. За какое минимальное количество взвешиваний на чашечных весах без гирь можно определить вес каждой монетки?
Задачу решили:
44
всего попыток:
51
11 дат года записаны в случайном порядке без указания месяцев: 4, 30, 2, 3, 5, 3, 1, 31, 4, 3, 1. Известно, что каждые две соседние (по календарю) даты отстоят друг от друга ровно на 30 дней (как, например, 1 и 31 января). Какое число соответствует августу?
Задачу решили:
35
всего попыток:
88
Студенты-математики в темноте одели шляпы разного цвет, затем включили свет и они увидели чужие шляпы, но не свои. Один из них крикнул: «Если вы видите как минимум 5 красных шляп и как минимум 5 белых, поднимите руку!» Ровно 10 человек подняли руки. Какое минимальное количество студентов могло быть?
Задачу решили:
31
всего попыток:
52
На окружности размещены 10 точек. Найдите количество вариантов соединения всех точек попарно 5-ю непересекающимися хордами.
Задачу решили:
34
всего попыток:
50
Все 20 клеток в ряду закрашивают в красный и синий цвета так, чтобы не было рядом более чем 2 клетки одного цвета. Найдите количество вариантов такой раскраски.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|