img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 55
всего попыток: 99
Задача опубликована: 27.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Рассмотрим возрастающую последовательность целых положительных чисел, квадрат которых заканчивается на 889.

Найти 889-е такое число.

Задачу решили: 42
всего попыток: 172
Задача опубликована: 01.05.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Пусть P(x) и Q(x) - кубические полиномы с коэффициэнтами при старшей степени равными 1 и a - действительное число.

P(x) имеет только два действительных корня a+1 и a+7.

Q(x) имеет только два действительных корня a+3 и a+9.

Известно, что P(x)-Q(x)=a для всех x. Найти a.

Задачу решили: 55
всего попыток: 73
Задача опубликована: 13.05.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Известно, что a1+a2+...an=27, все ai - положительные действительные числа. Найти максимум a1*a2*...*an. Ответ округлите до ближайшего целого.

Задачу решили: 48
всего попыток: 58
Задача опубликована: 25.05.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: snape

Остаток от деления x2015 на x2-x-1 равен ax+b. Чему равно a2-ab-b2.

Задачу решили: 28
всего попыток: 97
Задача опубликована: 01.06.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Найти наименьший период для функций, удовлетворяющих условию:
f(x+8)+f(x+5)+f(x+3)+f(x)=f(x+7)+f(x+4)+f(x+1). 

Задачу решили: 49
всего попыток: 94
Задача опубликована: 12.06.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Определите количество различных значений в конечной последовательности чисел [12/2015], [22/2015], [32/2015], ..., [20152/2015]

Задачу решили: 46
всего попыток: 63
Задача опубликована: 22.06.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: snape

Для целых положительных чисел n определена функция f(n)=n2+n+1. Найдите наибольшее n такое, что 2015*f(12)*f(22)*...*f(n2)≥(f(1)*f(2)*...f(n))2.

Задачу решили: 39
всего попыток: 88
Задача опубликована: 03.07.15 08:00
Прислал: admin img
Вес: 2
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найти сумму всех Fn/2015n для всех натуральных n. F0=0, F1=1, Fn=Fn-1+Fn-2.

Задачу решили: 68
всего попыток: 82
Задача опубликована: 08.07.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Mechta

[n*lg2]+[n*lg5]=2010. Найти n. ([x] - целая часть числа x.)

Задачу решили: 51
всего попыток: 64
Задача опубликована: 10.07.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите [102017/S], где  S=1+11+111+...+11...1 (2014 единиц).  [x] - целая часть числа x.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.