img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 135
всего попыток: 292
Задача опубликована: 07.05.10 08:00
Прислала: IrineK img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Сколько существует попарно различных треугольников с целочисленными сторонами и периметром 40?

Задачу решили: 110
всего попыток: 160
Задача опубликована: 05.11.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Сколькими способами можно расставить в ряд все десять цифр от 0 до 9 включительно так, чтобы сумма любых трёх из них, идущих подряд, не  превышала 12?

Задачу решили: 113
всего попыток: 326
Задача опубликована: 15.11.10 12:00
Прислал: bbny img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Найдите пропущенное число: 10, 11, 12, 13, 14, 20, 22, ?, 1010.

 

Задачу решили: 176
всего попыток: 288
Задача опубликована: 21.11.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

На шахматной доске 8×8 проведена прямая линия, не проходящая через углы клеток. Какое наибольшее число клеток она может пересекать?

Задачу решили: 176
всего попыток: 324
Задача опубликована: 20.12.10 08:00
Прислал: COKPAT img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Найдите количество различных трёхзначных чисел, сумма цифр которых делится на 13.

Задачу решили: 16
всего попыток: 368
Задача опубликована: 09.09.11 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Вернувшись из своего путешествия на Луну, Незнайка решил написать книгу о своих приключениях. Каждый вечер он читал новую главу из неё своим друзьям и однажды прочитал им следующие невероятные события: "Однажды утром Спрутс бросил меня в огромную пещеру с абсолютно гладкими гранитными стенами, которая представляла собой точный куб размерами 100x100x100 метров. Я стоял на краю небольшой ниши, нижний край которой был ровно в центре вертикальной грани этого куба. Выход на волю (его нижний край) был ровно в центре противоположной от меня грани. Присмотревшись, я увидел  канат висящий от выхода до пола. Если бы я как-то спустился на пол пещеры, я легко выбрался бы взобравшись по нему. Однако я был на высоте 50 метров от пола и не мог спрыгнуть. К счастью, у меня был подарок Миги: чудесный моток точно такого же каната. Сколько каната из него ни вытягивай, можно вытянуть еще столько же и так далее. Правда он был немного неудобный, в сечении это был не круг, а квадрат со стороной 2 см. Достаточно толстый, но очень гибкий и скользкий.  Как я ни старался, я так и не смог закрепить канат, чтобы спуститься по нему вниз. Исследовав всю небольшую нишу, я нашел ножницы, которыми можно было перерезать канат. Выхода из ситуации не было, однако поразмыслив я все же смог выбраться!"

"Враньё от первого до последнего слова!" — засмеялись все находившиеся в комнате коротышки, однако профессор Звёздочкин сказал, что при этих условиях у Незнайки действительно был один способ, чтобы выбраться из пещеры, и Знайка с ним согласился. Какое наименьшее количество метров каната нужно было вытянуть Незнайке из мотка, чтобы выбраться? (Считаем, что размеры Незнайки точечные, любой прыжок на любую высоту вверх или вниз смертелен).

Задачу решили: 35
всего попыток: 57
Задача опубликована: 14.09.11 08:00
Прислал: demiurgos img
Источник: Кружки МЦНМО
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

На листе клетчатой бумаги отмечено несколько узлов сетки (т.е. точек, в которых пересекаются вертикальные и горизонтальные линии) так, что внутри интервала, соединяющего любые две отмеченные точки вообще нет узлов сетки. Найдите наибольшее число отмеченных узлов.

Задачу решили: 111
всего попыток: 171
Задача опубликована: 19.09.11 08:00
Прислал: demiurgos img
Источник: Кружки МЦНМО
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

На доске написаны 13 чисел: 0, 1, 2, ..., 12. Среди них выбирают два каких-то числа a и b, стирают их, а вместо них пишут одно число ab+a+b. Описанную процедуру повторяют 12 раз. Найдите наибольшее число, которое может остаться на доске.

Задачу решили: 70
всего попыток: 104
Задача опубликована: 26.09.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

Найдите наибольшее значение n≤2011, при котором в клетках доски n×n можно расставить фишки так, чтобы на любых двух горизонталях стояли одинаковые количества фишек, а на любых двух вертикалях — различные. (В одну клетку можно поставить не более одной фишки, а каждая фишка должна занимать ровно одну клетку.)

Задачу решили: 152
всего попыток: 211
Задача опубликована: 14.11.11 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

Треугольник ABC - равнобедренный: AB = AC.

На стороне BC, длина которой равна 43, находится точка D. Дано:

AD = 17

CD = 13

Найдите, чему равен угол ADC в градусах.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.