Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
70
всего попыток:
134
В большую коробку положили 20 коробок поменьше. В некоторые из вложенных коробок положили по 20 еще поменьше. В некоторые из этих опять положили по 20, и т.д. После этого ровно 1000 коробок оказалось с содержимым. Какое наибольшее число коробок при этом может быть пустыми?
Задачу решили:
74
всего попыток:
113
В натуральном числе A переставили цифры и получили число B. Известно, что A - B состоит из единиц. Найдите наименьшее возможное количество единиц в разности.
Задачу решили:
77
всего попыток:
149
Найти минимальное значение квадрата выражения: x/y+z/t, если 1≤x≤y≤z≤t≤2013.
Задачу решили:
105
всего попыток:
117
Известно, что число ababab делится на 217. Найдите сумму возможных значений ab. (Здесь a, b - десятичные цифры, ababab и ab - числа, составленные из этих цифр.)
Задачу решили:
101
всего попыток:
128
Найдите минимум x8+x4+x2+y8+y4+y2 при условии x+y=1.
Задачу решили:
62
всего попыток:
105
Найти все способы построения 2013 спортсменов в N>1 рядов так, чтобы в каждом ряду, начиная со второго, стояло на одного человека больше, чем в предыдущем. Ввести сумму всех возможных значений N.
Задачу решили:
52
всего попыток:
78
Найти все способы построения 2013 спортсменов в N>1 рядов так, чтобы в каждом ряду, начиная со второго, стояло больше людей чем в предыдущем. Ввести сумму всех возможных значений N (одно и то же значение N считать только один раз).
Задачу решили:
85
всего попыток:
96
Известно, что при некотором a многочлен P(x) = xn-axn−2 для всех n > 2 делится на x-2. Чему равно максимальное значение a?
Задачу решили:
71
всего попыток:
142
Решите в целых числах уравнение (х2 - у2)2=16у+1. В ответе укажите сумму абсолютных величин компонент х и у всех решений.
Задачу решили:
39
всего попыток:
109
Найдите количество упорядоченных пар чисел (a,b) (0≤a,b≤10), для которых существует многочлен P(x) с целочисленными коэффициентами, и P(4)=a, P(11)=b?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|