Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
32
всего попыток:
34
Внутри окружности с целочисленным диаметром проведены две взаимно перпендикулярные хорды, которые разделились на четыре различных целочисленных отрезка, три из которых равны 56, 32, 4. Найти диаметр окружности.
Задачу решили:
33
всего попыток:
41
На стороне AC треугольника ABC выбрана точка D так, что |DC|=|AB|. угол BCA равен 45°, угол ABD равен 15°. Найти наименьшее возможное значение угла BAC в градусах.
Задачу решили:
36
всего попыток:
42
Найдите площадь закрашенной части.
Задачу решили:
21
всего попыток:
69
Какая доля большого правильного шестиугольника закрашена?
Задачу решили:
29
всего попыток:
34
Какая доля большого квадрата закрашена?
Задачу решили:
22
всего попыток:
52
Известно, что для каких-то 4-х точек на плоскости существует конечное количество окружностей, от которых они равноудалены. Найдите максимальное возможное значение этого количества.
Задачу решили:
34
всего попыток:
49
На сторонах CD и AD прямоугольника ABCD отмечены точки E и F соответственно так, что отрезками BE, BF, EF прямоугольник разделен на 4 треугольника. Площади трех треугольников BCE,ABF,DEF равны соответственно 8, 9, 10. Найти площадь треугольника BEF.
Задачу решили:
35
всего попыток:
48
Найдите отношение темной площади к светлой. Шестиугольник правильный.
Задачу решили:
38
всего попыток:
43
В полуокружности вписаны три конгруэнтных правильных треугольника со стороной равной 6. Найдите площадь полуокружности. В ответ введите значение делённое на π.
Задачу решили:
27
всего попыток:
74
На сторонах АВ и ВС треугольника АВС отмечены точки D и Е соответственно так, что отрезки АЕ и CD пересекаются в точке F и делят треугольник на три треугольника CEF, ADF, ACF c площадями 8, 9, 12 и четырехугольник BEFD. Найти площадь четырехугольника BEFD.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|