Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
26
В правильный треугольник со стороной 5 вписана окружность, в которую вписан квадрат. Найти сумму квадратов расстояний от каждой вершины квадрата до каждой вершины треугольника.
Задачу решили:
29
всего попыток:
31
Точка P удалена на расстояние, равное 7, от центра окружности, радиус которой равен 11. Через точку P проведена хорда, равная 18. Найдите длину наибольшего из отрезков, на которые делится хорда точкой P.
Задачу решили:
18
всего попыток:
26
Все стороны и медианы треугольника являются различными натуральными числами. Найдите минимально возможный периметр такого треугольника.
Задачу решили:
32
всего попыток:
34
В большей из двух концентрических окружностей проведена хорда, равная 32 и касающаяся меньшей окружности. Найдите радиус внутренней окружности, если ширина образовавшегося кольца равна 8.
Задачу решили:
30
всего попыток:
36
Около четырёхугольника ABCD можно описать окружность. Кроме того, |AB| = 3, |BC| = 4, |CD| = 5 и |AD| = 2. Найдите |AC|2.
Задачу решили:
24
всего попыток:
40
В четырехугольнике ABCD выполняются равенства |AB|=|BD|, угол ВАС=30°, угол ВСА=31°, угол DBC=3°. Найти угол BDC в градусах.
Задачу решили:
29
всего попыток:
34
Радиусы двух концентрических окружностей относятся как 1:2. Хорда большей окружности делится меньшей окружностью на три равные части. Найдите квадрат отношения этой хорды к диаметру большей окружности.
Задачу решили:
22
всего попыток:
23
Про четырехугольник ABCD известно следующее: угол DAB равен 150°, cумма углов DAC и ABD равна 120°, разность углов DBC и ABD равна 60°. Найти угол BDC в градусах.
Задачу решили:
25
всего попыток:
63
Сколько целых значений может иметь длина биссектрисы AD треугольника ABC, если |AB|=45 и |AC|=29 ?
Задачу решили:
22
всего попыток:
25
У прямоугольного листа ABCD угол BAD загибается так, что его вершина А попадает на сторону листа ВС. При этом получаются три прямоугольных треугольника, площади которых образуют арифметическую прогрессию. Если площадь наименьшего из треугольников равна 3, то чему равна площадь наибольшего из них? Ответ округлите до двух знаков после запятой.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|