Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
83
всего попыток:
84
Из четырёх неравенств 2x > 70, x < 100, 4x > 25 и x > 5 два истинны и два ложны. Найдите значение x, если известно, что оно целое.
Задачу решили:
33
всего попыток:
77
Вовочка задумал одно из чисел: 1, 2 или 3. На все вопросы он отвечает только: "да", "нет" или "не знаю". Попробуйте задать ему один вопрос, чтобы узнать задуманное число?
Задачу решили:
33
всего попыток:
56
В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны и a1 > a2 > . . . > an). При каком наименьшем n устроитель турнира может выбрать числа a1, . . . , an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.
Задачу решили:
33
всего попыток:
80
За круглым столом сидит компания из тридцати человек. Каждый из них либо дурак, либо умный. Всех сидящих спрашивают: - Кто Ваш сосед справа — умный или дурак? В ответ умный говорит правду, а дурак может сказать как правду, так и ложь. Известно, что количество дураков не превосходит F. При каком наибольшем значении F всегда можно, зная эти ответы, указать на умного человека в этой компании?
Задачу решили:
39
всего попыток:
56
Число 2100010006 обладает таким свойством: первая цифра равна количеству единиц в числе, вторая - двоек, и так далее, последняя - нулей. Найдите максимальное девятизначное число с "обратным" свойством, т.е. такое, в котором первая цифра соотвествует количеству "не единиц", вторая - "не двоек" и т.д., последняя - "не девяток".
Задачу решили:
28
всего попыток:
43
В колоде в неизвестном порядке лежат карточки на которых записаны все целые числа от 1 до 100. Вы можете задать вопрос в каком порядке относительно друг друга располагаются любые 50 чисел. За какое наименьшее число вопросов наверняка можно узнать порядок всех карточек с числами?
Задачу решили:
41
всего попыток:
116
Матрицу 10x10 заполнили целыми числами от 1 до 100 так, что сумма любых двух чисел на соседних клетках не превосходит некоторого целого числа M. Найдите минимально возможное M.
Задачу решили:
61
всего попыток:
88
Странные часы - где верх и низ на них не понятно, часовая, минутная и секундная стрелки - одинаковые. Стрелки А и Б указывают на часовые отметки, а стрелка В чуть не дошла до часовой отметки. Сколько прошло минут с начала текущего часа?
Задачу решили:
22
всего попыток:
28
В чемпионате по шахматам участвовало 16 игроков. После его окончания каждому участнику выдали отчет на 16 страницах. На первой указано имя участника, на второй - он и те, у кого он выиграл, на третьей - все люди из второго списка и те, у кого они выиграли, и т.д. на последней, 16-й, все участники со страницы 15 и те, у кого они выиграли. Известно, что для любого участника на его последнюю страницу попал человек, которого не было в его одиннадцатом списке. Какое максимальное количество партий чемпионата могло быть сыграно вничью?
Задачу решили:
25
всего попыток:
31
Есть 6 монет - 2 по одному центу, 2 по одному евроценту и 2 по копейке (монетки подписаны), причем в каждой паре есть одна настоящая и одна фальшивая. Все настоящие монетки весят одинаково и все фальшивые тоже, при этом все фальшивые - тяжелее. За какое минимальное число взвешиваний на чашечных весах без гирь можно определить все фальшивые и как?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|