img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 25
всего попыток: 138
Задача опубликована: 06.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для треугольника ABC верны следующие условия:

cos B + cos C = 1

<C - <B = 46°

Пусть O - центр описанной окружности, I - центр вписанной окружности, H - ортоцентр (точка пересечения высот) треугольника. Найти угол OIH.

Задачу решили: 42
всего попыток: 102
Задача опубликована: 08.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Периметр треугольника со сторонами a, b, c равен 2.

Найдите максимальное значение k такое, что:

(1-a)/b + (1-b)/c + (1-c)/a ≥ k.

Задачу решили: 36
всего попыток: 56
Задача опубликована: 20.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Стороны треугольника a > b > c являются целыми числами и удовлетворяют условию f(3a/10000)=f(3b/10000)=f(3c/10000), где f(x)=x-[x] ([x] - целая часть x). Найти минимум периметра такого треугольника.

Задачу решили: 81
всего попыток: 146
Задача опубликована: 25.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Какое количество точек, у которых хотя бы одна из координат является целым числом, лежит на окружности x2+y2=49?

Задачу решили: 25
всего попыток: 329
Задача опубликована: 03.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Три из четырех сторон четырехугольника имеют длины 3, 4 и 5 и два угла у него прямые. Пусть S - сумма различных площадей всех возможных таких четырехугольников. Чему равна целая часть S?

Задачу решили: 67
всего попыток: 110
Задача опубликована: 08.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите количество 7-значных чисел, состоящих из цифр 1, 2 и 3 и имеющих сумму цифр равную 10.

Задачу решили: 135
всего попыток: 163
Задача опубликована: 19.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите площадь зеленого квадрата.

tr6.png

Задачу решили: 36
всего попыток: 69
Задача опубликована: 26.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В правильном выпуклом 12-угольнике ABCDEFGHIJKL со стороной 1 провели отрезки AF, BG и CH, которые при пересечении образовали треугольник.

Найдите его площадь. Ответ укажите с точностью до 5-го знака после запятой.

Задачу решили: 38
всего попыток: 41
Задача опубликована: 22.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg

Два игрока по очереди берут одну из девяти плиток (карт, фишек), открыто пронумерованных от 1 до 9. Побеждает тот, кто первым соберет три плитки с общей суммой 15.
Доказать, что при правильной игре обоих игроков игра завершится ничьей.

Задачу решили: 23
всего попыток: 107
Задача опубликована: 21.11.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Три точки выбираются случайным образом из внутренней части единичного круга. Найдите вероятность того, что окружность, проходящая через эти три точки лежит целиком внутри единичной окружности.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.