Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
31
всего попыток:
52
Два парахода идут по морю с постоянными скоростями по фиксированным направлениям. В 9:00 они, когда они начали свое движение расстояние между ними было 20 км, в 9:35 - 15 км, а в 9:55 - 13 км. Через сколько минут после начала движения расстояние между ними стало минимальным?
Задачу решили:
30
всего попыток:
49
Найдите минимальное значение a2+b2, где a и b - действительные числа, для которых уравнение x4+ax3+bx2+ax+1=0 имеет по крайней мере один действительный корень.
Задачу решили:
30
всего попыток:
35
Найдите количество непрерывных функций f(x), определенных для всех действительных x и удовлетворяющих уравнения xf(y)+yf(x)=(x+y)f(x)f(y) для произвольных x и y.
Задачу решили:
38
всего попыток:
42
Найдите сумму 20208+20218+...+20998. В качестве ответа введите число состоящее из последних двух цифр суммы.
Задачу решили:
22
всего попыток:
31
Пусть x1, x2, x3, x4, x5 - натуральные числа, которые удовлетворяют соотношениям: Скольким сушествует таких различных наборов (x1, x2, x3, x4, x5)?
Задачу решили:
35
всего попыток:
60
Найдите все целые решения уравнения: p5+p3+2=q2-q. В ответе укажите значение суммы всех q.
Задачу решили:
27
всего попыток:
42
Множество значений суммы S = a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d), где a, b, c, d - положительные действительные числа расположены внутри некоторого минимально возможного отрезка действительной оси. Укажите середину этого отрезка.
Задачу решили:
30
всего попыток:
89
Квадратную шоколадку разделили на n2 квадратных кусочков, из которых сложили 4 прямоугольника и при этом остался 1 кусочек. Все линейные размеры прямоугольников (длины и ширины) и квадратного кусочка различные. При каком наименьшем n такое разбиение возможно?
Задачу решили:
40
всего попыток:
41
Действительная функция f(x) не равна тождественно нулю и для всех действительных x и y верно f(x)f(y)=f(x-y). Найдите f(2).
Задачу решили:
32
всего попыток:
59
Из трех разных цифр x, y, z создали всевозможные трехзначные числа, сумма которых в три раза больше трехзначного числа, все цифры которого есть x. Найдите сумму всех созданных трехзначных чисел.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|