Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
81
всего попыток:
146
Какое количество точек, у которых хотя бы одна из координат является целым числом, лежит на окружности x2+y2=49?
Задачу решили:
25
всего попыток:
329
Три из четырех сторон четырехугольника имеют длины 3, 4 и 5 и два угла у него прямые. Пусть S - сумма различных площадей всех возможных таких четырехугольников. Чему равна целая часть S?
Задачу решили:
135
всего попыток:
163
Найдите площадь зеленого квадрата.
Задачу решили:
36
всего попыток:
69
В правильном выпуклом 12-угольнике ABCDEFGHIJKL со стороной 1 провели отрезки AF, BG и CH, которые при пересечении образовали треугольник. Найдите его площадь. Ответ укажите с точностью до 5-го знака после запятой.
Задачу решили:
38
всего попыток:
41
Два игрока по очереди берут одну из девяти плиток (карт, фишек), открыто пронумерованных от 1 до 9. Побеждает тот, кто первым соберет три плитки с общей суммой 15.
Задачу решили:
23
всего попыток:
107
Три точки выбираются случайным образом из внутренней части единичного круга. Найдите вероятность того, что окружность, проходящая через эти три точки лежит целиком внутри единичной окружности.
Задачу решили:
39
всего попыток:
64
Пусть a > b > c - целые длины сторон треугольника такие, что
Задачу решили:
62
всего попыток:
140
На одном берегу реки собралась компания: отец с двумя сыновьями, мать с двумя дочерьми и шериф с заключенным. Все они хотя переплать на другой берег. При этом: 1. Детишки не могут одни находиться на плоту. 2. Шериф не может оставлять заключенного с остальными. 3. Мужчина не может оставлять своих двух сыновей одних с женщиной, а женщина своих дочерей с мужчиной. 4. Плот не может плыть сам по себе, а на плоту могут находиться не более 2 человек. Какое минимальное количество раз плот причалит к противоположному берегу, чтобы перевезти всю компанию.
Задачу решили:
104
всего попыток:
332
Найти количество квадратов, которые можно получить соединив любые 4 точки на рисунке.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|