Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
89
Квадратную шоколадку разделили на n2 квадратных кусочков, из которых сложили 4 прямоугольника и при этом остался 1 кусочек. Все линейные размеры прямоугольников (длины и ширины) и квадратного кусочка различные. При каком наименьшем n такое разбиение возможно?
Задачу решили:
32
всего попыток:
59
Из трех разных цифр x, y, z создали всевозможные трехзначные числа, сумма которых в три раза больше трехзначного числа, все цифры которого есть x. Найдите сумму всех созданных трехзначных чисел.
Задачу решили:
41
всего попыток:
77
Найдите пропущенное число:
Задачу решили:
32
всего попыток:
71
Если 25 ♥ 20 = 40, 70 ♥ 60=88, 40 ♥ 40 = 64, 60 ♥ 10 = 64, 75 ♥ 60 = 90, 24 ♥ 25 = 43, то чему равно 10 ♥ 10?
Задачу решили:
23
всего попыток:
40
Костя выписал в строчку без пробелов все натуральные числа от 1 до N, а потом вычеркнул из строчки N одинаковых цифр. При каком наименьшем N>1 это могло случиться?
Задачу решили:
34
всего попыток:
44
Два оранжевых прямоугольных треугольника имеют одинаковую площадь, пятиугольник - правильный. Найдите (a/b-1)2.
Задачу решили:
23
всего попыток:
67
На доске 5x5 расставлены 25 шашек реверси. За один ход разрешено перевернуть любую шашку и все соседние с ней (по стороне). Перевернутая шашка имеет другой цвет. Вначале все шашки белые. За какое наименьшее число ходов удастся получить позицию с одной чёрной шашкой?
Задачу решили:
37
всего попыток:
37
Число ABCDEF состоит из разных цифр, таких что Найдите наименьшее число ABCDEF.
Задачу решили:
31
всего попыток:
50
*****/*****=9 Замените в выражении звездочки различными цифрами от 0 до 9 так, что было верно равенство. Первая цифра в числе не может быть 0. Найдите все раздичные решения и введите в качестве ответа сумму всех числителей.
Задачу решили:
30
всего попыток:
45
Сколькими способами можно разбить число 64 на 10 натуральных слагаемых, наибольшее из которых равно 12. (Разбиения, отличающиеся только порядком слагаемых, не считаются различными.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|