img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 43
всего попыток: 69
Задача опубликована: 03.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти сумму всех целых чисел n таких, что
n2+2 | 2014n+2. ( a | b - означает, что a делит b, или a является делителем числа b)

Задачу решили: 60
всего попыток: 122
Задача опубликована: 16.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найти максимальное натуральное число n такое, что n7+1 делится на n+7.

Задачу решили: 40
всего попыток: 242
Задача опубликована: 09.02.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

В школе учится 100 учеников и для каждого имеется свой шкафчик. Все школьники имеют свои номера, соответствующие номерам шкафчиков. Изначально все шкафчики закрыты. Школьники приходят в порядке нумерации.

Когда приходит школьник 1, то он открывает все шкафчики.

Школьник 2 закрывает каждый 2-й шкафчик.

Школьник 3 изменяет состояние каждого 3-го шкафчика: если открыт, то закрывает, если закрыт, то открывает.

Школьник 4 изменяет состояние каждого 4-го шкафчика. И т.д. до 100-го школьника. 

Если какой-то школьник не приходит, то никто не выполняет за него указанную процедуру.

В один из дней все шкафчики были закрыты, кроме 1-го. Сколько в этот день отсутствовало школьников?

Задачу решили: 45
всего попыток: 58
Задача опубликована: 01.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Random (Руслан Головин)

Найти количесто пар натуральных чисел таких n и m (n>=m), что nm=n+m+НОД(n,m), где НОД(n,m) - наибольший общий делитель чисел n и m.

Задачу решили: 60
всего попыток: 65
Задача опубликована: 03.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Zoxan

Найти сумму всех натуральных чисел n таких, что произведение его цифр равно n2-10n-22.

Задачу решили: 21
всего попыток: 32
Задача опубликована: 06.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Пусть a и b - натуральные числа, рассмотрим все 6 возможных попарных произведений чисел a, b, a+2 и b+2. Какое максимальное количество из этих произведений могут быть полными квадратами.

Задачу решили: 35
всего попыток: 54
Задача опубликована: 10.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: snape

Пусть k, m, n - натуральные числа меньшие чем 1215. Найти количество упорядоченных троек таких, что k2+7m2+5, m2+7n2+5, n2+7k2+5 - являются целыми квадратами.

Задачу решили: 27
всего попыток: 54
Задача опубликована: 13.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: kvanted

Пусть функция f(x) определена на множестве рациональных чисел и f(m/n)=1/n для взаимно-простых m и n. Найти произведение всех x таких, что f((x-f(x))/(1-f(x)))=f(x)+9/52.

Задачу решили: 18
всего попыток: 38
Задача опубликована: 20.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: zmerch

18 монет пронумерованы с 1 до 18. Первому игроку известно, что монеты с номерами 1,2,...,9 настоящие, а монеты с номерами 10,11,..,18 - фальшивые. Обоим игрокам известно, что фальшивые монеты легче, чем настоящие (при этом все фальшивые весят одинаково, и все настоящие весят одинаково). Второму игроку неизвестно, ни сколько монет фальшивых, ни их номера. За какое минимальное количество взвешиваний на весах без гирек первый игрок может доказать второму, что монеты 1,2,...,9 - настоящие, а 10,11,..,18 - фальшивые?

Задачу решили: 38
всего попыток: 62
Задача опубликована: 29.05.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

При представлении числа N в виде N=±1±2±3±...±100 можно в любом месте выбирать знак "плюс" или "минус". Сколько чисел можно представить в таком виде?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.