img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 45
всего попыток: 94
Задача опубликована: 11.07.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

В прямоугольном треугольники периметр (P) и площадь (S) - целые числа и (P+4)=(S-1)(P-4). Найдите сумму всех возможных переиметров таких треугольников?

Задачу решили: 83
всего попыток: 121
Задача опубликована: 14.07.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Вычислить сумму a2015 + 1/a2015, если a2a + 1 = 0.

Задачу решили: 79
всего попыток: 104
Задача опубликована: 23.07.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Числа от 1 до 9 разбили на 3 группы по 3 числа в каждой. Числа в каждой группе перемножили и выбрали максимум из них. Найдите минимум среди возможных максимумов.

Задачу решили: 86
всего попыток: 109
Задача опубликована: 25.07.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: kvanted

Сумма N действительных чисел равна 20. Сумма трех наименьших из них равна 5, а наибольших - 7. Чему равно N?

Задачу решили: 43
всего попыток: 180
Задача опубликована: 28.07.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

На столе лежит 100 монет орлами вверх. За одно действие вы можете перевернуть ровно 93 монетки. Какое наименьшее количество действий нужно совершить, чтобы все монетки лежали вверх решками.

Задачу решили: 40
всего попыток: 62
Задача опубликована: 30.07.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Пусть N равно произведению всех возможных значений (n2+nm+m2) для всех пар натуральных чисел n и m таких, что 1 ≤ n < m  ≤ 100. Чему равен остаток от деления N на 101?

Задачу решили: 25
всего попыток: 138
Задача опубликована: 06.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для треугольника ABC верны следующие условия:

cos B + cos C = 1

<C - <B = 46°

Пусть O - центр описанной окружности, I - центр вписанной окружности, H - ортоцентр (точка пересечения высот) треугольника. Найти угол OIH.

Задачу решили: 42
всего попыток: 102
Задача опубликована: 08.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Периметр треугольника со сторонами a, b, c равен 2.

Найдите максимальное значение k такое, что:

(1-a)/b + (1-b)/c + (1-c)/a ≥ k.

Задачу решили: 54
всего попыток: 92
Задача опубликована: 11.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найдите наименьшее натуральное число, которое не может быть выражено в виде (2a-2b)/(2c-2d), где a, b, c, d - также натуральные числа.

Задачу решили: 81
всего попыток: 146
Задача опубликована: 25.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Какое количество точек, у которых хотя бы одна из координат является целым числом, лежит на окружности x2+y2=49?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.