Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
48
Найдите количество действительных решений системы уравнения:
Задачу решили:
31
всего попыток:
50
Найдите количество действительных решений:
Задачу решили:
22
всего попыток:
26
Пусть f(x) - многочлен такой, что f(f(x))−x2 = xf(x). Найти f(2022).
Задачу решили:
27
всего попыток:
32
Пусть p и q такие натуральные числа, что уравнения x2-px+q=0 и x2-qx+p=0 имеют неравные целочисленные корни. Найти количество таких различных упорядоченных пар (p, q).
Задачу решили:
25
всего попыток:
42
Известно, что
Задачу решили:
29
всего попыток:
31
Точка P удалена на расстояние, равное 7, от центра окружности, радиус которой равен 11. Через точку P проведена хорда, равная 18. Найдите длину наибольшего из отрезков, на которые делится хорда точкой P.
Задачу решили:
32
всего попыток:
34
В большей из двух концентрических окружностей проведена хорда, равная 32 и касающаяся меньшей окружности. Найдите радиус внутренней окружности, если ширина образовавшегося кольца равна 8.
Задачу решили:
30
всего попыток:
36
Около четырёхугольника ABCD можно описать окружность. Кроме того, |AB| = 3, |BC| = 4, |CD| = 5 и |AD| = 2. Найдите |AC|2.
Задачу решили:
29
всего попыток:
34
Радиусы двух концентрических окружностей относятся как 1:2. Хорда большей окружности делится меньшей окружностью на три равные части. Найдите квадрат отношения этой хорды к диаметру большей окружности.
Задачу решили:
24
всего попыток:
25
Определить сумму всех натуральных чисел x, для которых число 1 + x + x2 + x3 + x4 + x5 + x6 + x7 является степенью простого числа.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|